

“FM” — 2017/5/31 — 10:36 — page i — #1

artificial intelligence and legal analytics

New Tools for Law Practice in the Digital Age

The field of artificial intelligence (AI) and the law is on the cusp of a revolution that began
with text analytic programs like IBM’sWatson andDebater and the open-source informa-
tion management architectures on which they are based. Today, new legal applications
are beginning to appear, and this book – designed to explain computational processes
to non-programmers – describes how they will change the practice of law, specifically
by connecting computational models of legal reasoning directly with legal text, generat-
ing arguments for and against particular outcomes, predicting outcomes, and explaining
these predictions with reasons that legal professionals will be able to evaluate for them-
selves. These legal apps will support conceptual legal information retrieval and enable
cognitive computing, enabling a collaboration between humans and computers in which
each performs the kinds of intelligent activities that they can do best. Anyone interested
in how AI is changing the practice of law should read this illuminating work.

Dr. Kevin D. Ashley is a Professor of Law and Intelligent Systems at the University of
Pittsburgh, Senior Scientist, Learning Research and Development Center, and Adjunct
Professor of Computer Science. He received a B.A. from Princeton University, a JD
from Harvard Law School, and Ph.D. in computer science from the University of Mas-
sachusetts. A visiting scientist at the IBM Thomas J. Watson Research Center, NSF
Presidential Young Investigator, and Fellow of the American Association for Artificial
Intelligence, he is co-Editor-in-Chief of Artificial Intelligence and Law and teaches in
the University of Bologna Erasmus Mundus doctoral program in Law, Science, and
Technology.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 08:54:17, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page ii — #2

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 08:54:17, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page iii — #3

Artificial Intelligence and Legal Analytics

new tools for law practice in
the digital age

KEVIN D. ASHLEY
University of Pittsburgh School of Law

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 08:54:17, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page iv — #4

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107171503
doi: 10.1017/9781316761380

© Kevin D. Ashley 2017

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2017

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-107-17150-3 Hardback
ISBN 978-1-316-62281-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 08:54:17, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page v — #5

For Alida, forever

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 08:55:23, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page vi — #6

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 08:55:23, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page vii — #7

Contents

List of illustrations page xv
List of tables xxi
Acknowledgments xxiii

part i computational models of legal reasoning 1

1 Introducing AI & Law and Its Role in Future Legal Practice 3

1.1. Introduction 3
1.2. AI & Law and the Promise of Text Analytics 4
1.3. New Paradigms for Intelligent Technology in Legal Practice 6

1.3.1. Former Paradigm: Legal Expert Systems 8
1.3.2. Alternative Paradigms: Argument Retrieval and Cognitive

Computing 11
1.3.3. Toward the New Legal Apps 14

1.4. What Watson Can and Cannot Do 14
1.4.1. IBM’s Watson 15
1.4.2. Question Answering vs. Reasoning 18
1.4.3. IBM’s Debater Program 23
1.4.4. Text Analytic Tools for Legal Question Answering 27
1.4.5. Sources for Text Analytic Tools 30

1.5. A Guide to This Book 31
1.5.1. Part I: Computational Models of Legal Reasoning 32
1.5.2. Part II: Legal Text Analytics 33
1.5.3. Part III: Connecting Computational Reasoning Models

and Legal Texts 34
1.6. Implications of Text Analytics for Students 35

vii
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:05:57, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page viii — #8

viii Contents

2 Modeling Statutory Reasoning 38

2.1. Introduction 38
2.2. Complexities of Modeling Statutory Reasoning 39

2.2.1. Semantic Ambiguity and Vagueness 39
2.2.2. Syntactic Ambiguity 40

2.3. Applying Statutory Legal Rules Deductively 42
2.3.1. Running a Normalized Version on a Computer 43
2.3.2. Predicate Logic 44
2.3.3. Syntactic Ambiguity as Design Constraint 45
2.3.4. The BNA Program 47
2.3.5. Some Problems of Translating Statutes into Programs 48

2.4. The Complexity of Statutory Interpretation and the Need for
Arguments 52
2.4.1. A Stepwise Process of Statutory Interpretation 53
2.4.2. Other Sources of Legal Indeterminacy 54

2.5. Management Systems for Business Rules and Processes 56
2.5.1. Business Process Expert Systems 56
2.5.2. Automating Business Process Compliance 60
2.5.3. Requirements for a Process Compliance Language 62
2.5.4. Connecting Legal Rules and Business Processes 65
2.5.5. Example of Business Process Compliance Modeling 68

2.6. Representing Statutory Networks 70

3 Modeling Case-based Legal Reasoning 73

3.1. Introduction 73
3.2. Relationship of Legal Concepts and Cases 74

3.2.1. The Legal Process 74
3.2.2. The Legal Process Illustrated 75
3.2.3. Role of Legal Concepts 76

3.3. Three Computational Models of Legal Concepts and Cases 77
3.3.1. Prototypes and Deformations 78
3.3.2. Dimensions and Legal Factors 81
3.3.3. Exemplar-based Explanations 93

3.4. Teleological Models of Case-based Legal Reasoning 97
3.5. An Approach to Modeling Teleological Reasoning 100

3.5.1. Teleology in Theory Construction 101
3.6. Design Constraints for Cognitive Computing with Case-based

Models of Legal Reasoning 104

4 Models for Predicting Legal Outcomes 107

4.1. Introduction 107
4.2. A Nearest Neighbor Approach to Automated Legal Prediction 108

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:05:57, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page ix — #9

Contents ix

4.3. Introduction to Supervised Machine Learning 109
4.3.1. Machine Learning Algorithms: Decision Trees 110

4.4. Predicting Supreme Court Outcomes 111
4.4.1. Features for Predicting Supreme Court Outcomes 112
4.4.2. Applying Supervised Machine Learning to SCOTUS

Data 112
4.4.3. Evaluating the Machine Learning Method 113
4.4.4. Machine Learning Evaluation Measures and Results 114

4.5. Predicting Outcomes with Case-based Arguments 114
4.5.1. Prediction with CATO 115
4.5.2. Issue-based Prediction 115
4.5.3. IBP’s Prediction Algorithm 117
4.5.4. Evaluating IBP’s Predictions 119

4.6. Prediction with Underlying Values 121
4.7. Prediction based on Litigation Participants and Behavior 123
4.8. Prediction in Cognitive Computing 125

5 Computational Models of Legal Argument 127

5.1. Introduction 127
5.1.1. Advantages of CMLAs 128

5.2. The Carneades Argument Model 129
5.3. An Extended Example of a CMLA in Action 131

5.3.1. Family Law Example with Carneades 132
5.3.2. Arguing with Defeasible Legal Rules 134
5.3.3. Integrating Arguing with Cases and Rules 135

5.4. Computational Model of Abstract Argumentation 139
5.5. How CMLAs Compute Winners and Losers 141

5.5.1. Resolving Conflicting Arguments about Facts 142
5.5.2. Resolving Conflicting Arguments about Values 143
5.5.3. Resolving Conflicting Arguments about Legal Rules 144

5.6. How Practical are Computational Models of Legal
Argument? 144
5.6.1. Role of Proof Standards in CMLAs 145
5.6.2. Integrating Probabilistic Reasoning into CMLAs 147

5.7. Value Judgment-based Argumentative Prediction Model 149
5.7.1. VJAP Domain Model 150
5.7.2. VJAP Values Underlying Trade Secret Regulation 151
5.7.3. VJAP Argument Schemes 154
5.7.4. VJAP’s Argument-based Predictions 156
5.7.5. VJAP Program Evaluation 158

5.8. Computational Model of Evidentiary Legal Argument 160
5.9. Computational Models of Legal Argument as a Bridge 164

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:05:57, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page x — #10

x Contents

part ii legal text analytics 169

6 Representing Legal Concepts in Ontologies and Type Systems 171

6.1. Introduction 171
6.2. Ontology Basics 172
6.3. Sample Legal Ontologies 174

6.3.1. The e-Court Ontology 174
6.3.2. van Kralingen’s Frame-based Ontology 176

6.4. Constructing Legal Ontologies 178
6.5. Ontological Support for Statutory Reasoning 181
6.6. Ontological Support for Legal Argumentation 185

6.6.1. A Target Application for Legal Argument Ontology 185
6.6.2. An Ontology for the Argument Microworld 190
6.6.3. Limits for Automating Legal Argumentation through

Ontological Support 198
6.6.4. Ontological Support for Cognitive Computing in Legal

Argumentation 201
6.7. Type Systems for Text Analytics 202

6.7.1. Defining a Type System 202
6.7.2. Type System Example: DeepQA 203

6.8. LUIMA: A Legal UIMA Type System 204
6.9. LUIMA Annotations can Support Conceptual Legal

Information Retrieval 208

7 Making Legal Information Retrieval Smarter 210

7.1. Introduction 210
7.2. Current Legal Information Retrieval Services 211
7.3. An Example of Using Commercial Legal IR Systems 212
7.4. How Legal IR Systems Work 214
7.5. IR Relevance Measures 216

7.5.1. Boolean Relevance Measure 216
7.5.2. Vector Space Approach to Relevance 217
7.5.3. Probabilistic Model of Relevance 218

7.6. Assessing Legal IR Systems 221
7.7. Recent Developments in Legal IR Systems 223
7.8. Comparing Legal IR and CMLAs 226
7.9. Improving Legal IR with AI & Law Approaches 226

7.9.1. Integrating Legal Ontologies and IR 227
7.9.2. Integrating Legal IR and AI & Law Relevance

Measures 227

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:05:57, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xi — #11

Contents xi

7.9.3. Augmenting Legal IR Relevance Assessment with
Citation Networks 230

7.9.4. Detecting Concept Change 232
7.10. Conclusion 233

8 Machine Learning with Legal Texts 234

8.1. Introduction 234
8.2. Applying Machine Learning to Textual Data 234
8.3. A Basic Setup for Applying ML to Legal Texts 236
8.4. Machine Learning for e-Discovery 239

8.4.1. Litigators’ Hypotheses in e-Discovery 240
8.4.2. Predictive Coding Process 241
8.4.3. Assessing Predictive Coding Effectiveness 243
8.4.4. Other Open Issues in Predictive Coding 246
8.4.5. Unsupervised Machine Learning from Text 247

8.5. Applying ML to Legal Case Texts in the History Project 248
8.5.1. History Project System Architecture 249
8.5.2. ML Algorithms: Support Vector Machines 251
8.5.3. History Project SVM 252

8.6. Machine Learning of Case Structures 253
8.7. Applying ML to Statutory Texts 254

8.7.1. Statutory Analysis 254
8.7.2. An Interactive ML Tool for Statutory Analysis 255

8.8. Toward Cognitive Computing Legal Apps 257

9 Extracting Information from Statutory and Regulatory Texts 259

9.1. Introduction 259
9.2. Research Overview Regarding Extracting Information from

Statutory Texts 260
9.3. Automatically Extracting Functional Information from Statutory

Provisions 262
9.3.1. Machine Learning to Extract Functional Types of Provisions 263
9.3.2. Text Classification Rules to Extract Functional Information 265

9.4. ML vs. KE for Statutory Information Extraction 266
9.5. Extracting Logical Rules from Statutes and Regulations 268
9.6. Extracting Requirements for Compliant Product Designs 270

9.6.1. Implementing Compliance with Extracted Regulations 272
9.6.2. Semiautomated Approaches to Improving Human

Annotation for Compliance 272
9.7. Extracting Functional Information to Compare Regulations 275

9.7.1. Machine Learning for Constructing Statutory Networks 276
9.7.2. Applying an ML Algorithm for Statutory Texts 278

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:05:57, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xii — #12

xii Contents

9.7.3. Evaluating the ML Algorithm on Statutory Texts and
Dealing with Sparse Training Data 280

9.7.4. Applying LUIMA to Enrich Statutory Text Representation 282
9.8. Conclusion 283

10 Extracting Argument-Related Information from Legal Case Texts 285

10.1. Introduction 285
10.2. Argument-Related Information in Legal Cases 286
10.3. Extracting Legal Argument Claims 287

10.3.1. Machine Learning to Classify Sentences as Propositions,
Premises, and Conclusions 287

10.3.2. Text Representation 288
10.3.3. Applying Statistical Learning Algorithms 289
10.3.4. Argument Grammar for Discourse Tree Structure 291
10.3.5. Identifying Instances of Argument Schemes 293

10.4. Extracting Argument-Related Legal Factors 294
10.4.1. Three Representations for Learning from Text 294
10.4.2. How Well Did SMILE Work? 297
10.4.3. Annotating Factor Components 298

10.5. Extracting Findings of Fact and Cited Legal Rules 299
10.5.1. Applying the LUIMA Type System 299
10.5.2. Preparing Gold Standard Cases 300
10.5.3. LUIMA-Annotate 301
10.5.4. Evaluating LUIMA-Annotate 304

10.6. Annotation of Training Data 305
10.6.1. Annotation in IBM Debater 306
10.6.2. Annotation Protocols 308
10.6.3. Computer-Supported Annotation Environments 308

part iii connecting computational reasoning models and
legal texts 311

11 Conceptual Legal Information Retrieval for
Cognitive Computing 313

11.1. Introduction 313
11.2. State of the Art in Conceptual Legal IR 315
11.3. LUIMA Architecture 316

11.3.1. LUIMA-Search 316
11.3.2. Reranking Documents with LUIMA-Rerank 320

11.4. An Experiment to Evaluate LUIMA 321
11.4.1. Evaluation Metrics 323
11.4.2. LUIMA vs. CLIR 324

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:05:57, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xiii — #13

Contents xiii

11.5. Continuing to Transform Legal IR into AR 327
11.5.1. Connecting LARCCS and Legal IR Systems 328
11.5.2. Querying for Cases with Extended Argument-Related

Information 329
11.5.3. New Legal Annotation Types 332
11.5.4. Prospects for Annotating Expanded Legal Types 336
11.5.5. Eliciting Users’ Argument Needs 339

11.6. Conceptual Information Retrieval from Statutes 342
11.6.1. A Type System for Statutes 343
11.6.2. Network Techniques for Conceptual Legal IR 345
11.6.3. Conceptual Legal IR with Statutory Network Diagrams 346

11.7. Conclusion 349

12 Cognitive Computing Legal Apps 350

12.1. Introduction 350
12.2. New Legal Apps on the Market 351

12.2.1. Ross 351
12.2.2. Lex Machina 353
12.2.3. Ravel 353

12.3. Bridging Legal Texts and Computational Models 354
12.4. Cognitive Computing Apps for Testing Legal Hypotheses 354

12.4.1. A Paradigm for CCLAs: Legal Hypothesis-Testing 355
12.4.2. Targeted Legal Hypotheses 357
12.4.3. Operationalizing Hypotheses 359
12.4.4. Interpreting Hypotheses 361

12.5. Challenges for Cognitive Computing Legal Apps 367
12.5.1. Challenges: Automatically Annotating Legal Argument-

Related Information 368
12.5.2. Challenges: Manual Annotation of Training Instances 373
12.5.3. Challenges: Query-Interface Design 379

12.6. Detecting Opportunities for New Hypotheses and Arguments 381
12.7. What to Do Next? 384
12.8. Conclusion 390

Glossary 393
Bibliography 403
Index 421

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:05:57, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xiv — #14

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:05:57, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xv — #15

Illustrations

1.1 Heuristic rules defining loss and strict liability (Waterman and
Peterson, 1981) 9

1.2 ATN for offer and acceptance problems with four states: (0) no
relevant legal relations; (1) offer pending; (2) contract exists; (12)
contract exists and proposal to modify is pending (Gardner, 1987, p. 124) 19

1.3 Gardner’s heuristic method for distinguishing hard and easy legal
questions (Gardner, 1987; Rissland, 1990) 22

1.4 Argument diagram of IBM Debater’s output for violent video games
topic (root node) (see Dvorsky, 2014) 24

1.5 Diagram representing realistic legal argument involving violent video
games topic 25

1.6 Architecture of text analyzer for legal documents including contracts.
Dashed boxes show components for semantic analysis and conceptual
information retrieval 29

2.1 Normalized versions of two alternative interpretations of the Louisiana
statute and corresponding Prolog rules (bottom) (Allen and Engholm,
1978) 42

2.2 IRC section 354 and a normalized version (right) (see Allen and
Engholm, 1978) 43

2.3 Flow chart for propositionalized IRC section 354 (see Allen and
Engholm, 1978) 44

2.4 BNA provisions as represented in rules (Sergot et al., 1986) 47
2.5 BNA program output (excerpts) (Sergot et al., 1986, p. 376f) 49
2.6 Norm graphs for concluding “Legality” in section 4 (1) FDPA and

“Effective Consent” (see Oberle et al., 2012, pp. 305–6, Figs. 13 and 14) 59

xv
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:07:18, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xvi — #16

xvi Illustrations

2.7 Sample BPMN diagram of simple insurance claim process with
business rule annotations (see Table 2.1) (Koetter et al., 2014,
Fig. 2, p. 220) 60

2.8 Petri net representing simple producer–consumer resource allocation
problem (see Kafura, 2011, p. 8) 66

2.9 Compliance system report of traces, rules, and tasks responsible for
noncompliance (excerpts) (see Governatori and Shek, 2012) 69

2.10 Statutory network diagram comparing Pennsylvania (PA) and Florida
(FL) statutory schemes re public health emergency surveillance:
Circles indicate public health system actors and partners in FL
and PA. Grey links indicate relationships present in both states;
white links indicate legal relationships present in PA but not in FL
(Sweeney et al., 2014) 71

3.1 Secrets-Disclosed-Outsiders dimension in Ashley (1990) 82
3.2 Hypo-style three-ply argument for the Mason case (see Ashley, 1990) 85
3.3 Hypo argument model with Venn diagram (Ashley, 1990) 86
3.4 Hypo claim lattice (Ashley, 1990) 87
3.5 Example of CABARET’s process for analyzing Weissman v. IRS, 751

F. 2d 512 (2d Cir. 1984) (Rissland and Skalak, 1991) 89
3.6 CATO Factor hierarchy (Aleven, 1997, 2003) 92
3.7 CATO argument downplaying/emphasizing distinction (Aleven, 2003) 92
3.8 GREBE semantic net representation of Vaughn case (Branting, 1991,

1999) 93
3.9 GREBEmatches structure ofVaughn case to Jarek problem (Branting,

1991, 1999) 94
3.10 In-furtherance-of employment cases retrieved by GREBE for Jarek

problem (Branting, 1991, 1999) 96
3.11 Excerpts of GREBE’s argument for Jarek problem (see Branting, 1991,

1999) 97
3.12 Which argument better accounts for teleological concerns? (Berman

and Hafner, 1993) 99
3.13 Theory constructed from factor and value preferences (Bench-Capon

and Sartor, 2003) 101
3.14 Argument as theory construction from factor and value preferences

(see Bench-Capon and Sartor, 2003) 102
4.1 Projection of capital gains tax cases onto two dimensions (seeMackaay

and Robillard, 1974) 109
4.2 Bail decisions data (a) from which decision tree is constructed (b) 110
4.3 Example features from Supreme Court database [S], the Segal–Cover

Scores [SC], and feature engineering [FE] (Katz et al., 2014) 112
4.4 IBP domain model (Ashley and Brüninghaus, 2006) 116
4.5 IBP algorithm (Ashley and Brüninghaus, 2009) 117

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:07:18, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xvii — #17

Illustrations xvii

4.6 Example of IBP’s prediction for MBL case 118
4.7 IBP vs. other predictionmethods: results (Ashley and Brüninghaus, 2009) 119
4.8 Excerpts from a theory learned by AGATHA with Mason case as cfs

(Chorley and Bench-Capon, 2005a) 121
5.1 A Carneades argument diagram (Gordon, 2008b,c; Gordon and

Walton, 2009; Walton and Gordon, 2009; see Ashley, 2012) 131
5.2 Classical deduction (Gordon, 2008b,c; Gordon and Walton, 2009;

Walton and Gordon, 2009) 133
5.3 Classical deduction cannot prove proposition and its opposite

(see Gordon, 2008b,c; Gordon and Walton, 2009; Walton and
Gordon, 2009) 133

5.4 Scheme for arguments from defeasible inference rules (see Gordon,
2008b,c; Gordon and Walton, 2009; Walton and Gordon, 2009) 134

5.5 Arguments (pro and con) with defeasible inference rules (Gordon,
2008b, c; Gordon and Walton, 2009; Walton and Gordon, 2009; see
Ashley, 2012) 136

5.6 When the rules run out (see Gordon, 2008b, c; Gordon and Walton,
2009; Walton and Gardon, 2009) 136

5.7 Carneades case-based argument (con) (Gordon, 2008b, c; Gordon
and Walton, 2009; Walton and Gordon, 2009; see Ashley, 2012) 138

5.8 Carneades case-based argument (pro) (Gordon, 2008b,c; Gordon and
Walton, 2009; Walton and Gordon, 2009; see Ashley, 2012) 139

5.9 Attacking arguments as per VAF (see Atkinson and Bench-Capon,
2007, p. 113) 140

5.10 VJAP domain model (Grabmair, 2016) 150
5.11 Values protected by trade secret law: interests of plaintiffs in property

and confidentiality (Grabmair, 2016) 152
5.12 Values protected by trade secret law: interests of general public in

the usability of publicly available information and in fair competition
(Grabmair, 2016) 153

5.13 VJAP Program output for Dynamics Case (excerpts) (Grabmair, 2016,
pp. 59–60) 155

5.14 Statement and argument structure for reasoning about a Restatement
issue with trade-offs in VJAP (Grabmair, 2016, p. 51) 157

5.15 DLF partial rule tree for vaccine decisions, showing three causation
conditions of Althen (see Walker et al., 2011) 162

5.16 DLF extracted reasoning chains (excerpts) (see Walker et al., 2011) 163
6.1 Sample ontology for contract formation 172
6.2 Excerpts from e-Court ontology showing expansion of “reasoning

object,” “agent,” and “juridical role.” Links are is-a unless otherwise
noted (see Breuker and Hoekstra, 2004; Breuker et al., 2004; Van
Engers et al., 2008) 175

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:07:18, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xviii — #18

xviii Illustrations

6.3 Ontology in the DALOS system (excerpts) (see Francesconi et al., 2010) 179
6.4 Model of legal argument with hypotheticals (Ashley, 2009b) 188
6.5 Case frame for Property-Interests-in-QuarryMicroworld (P=Plaintiff,

D=Defendant) 191
6.6 Factor frame for Property-Interests-in-Quarry Microworld

(P=Plaintiff, D=Defendant) 192
6.7 ILC frame for Property-Interests-in-Quarry Microworld (P=Plaintiff,

D=Defendant) 196
6.8 Test frame for Property-Interests-in-Quarry Microworld (P=Plaintiff,

D=Defendant) 197
6.9 Policy/Value frame for Property-Interests-in-Quarry Microworld

(P=Plaintiff, D=Defendant) 197
6.10 Judge McCarthy’s Test in Popov v. Hayashi 201
7.1 Three-dimensional vector space model 217
7.2 BN for the family-away problem (see Charniak, 1991, p. 52) 219
7.3 Inference network retrieval model (see Turtle, 1995, p. 33) 220
7.4 Architecture of SPIRE (Daniels and Rissland, 1997a) 228
7.5 Retrieval for “videocassette” (see Rose and Belew, 1991) 230
8.1 History Project system architecture (see Al-Kofahi et al., 2001) 249
8.2 SVM examples. Black dots are positive instances, gray dots are

negative, and the white dot is “unknown” (see Noble, 2006, p. 1566) 252
8.3 Statutory analysis tool (Savelka et al., 2015) 256
9.1 Sample input/output of xmLegesExtractor (Francesconi, 2009, p. 66) 263
9.2 Multiclass SVM hyperplane example (see Francesconi and Passerini,

2007, p. 12) 264
9.3 Sample statutory sentences annotated for logical parts: antecedents

<A>, consequents <C>, and topics <T> (Bach et al., 2013) 269
9.4 Term suggestions for annotation templates (see Yoshida et al., 2013) 274
9.5 Partitioning statutory provision into subtree chunks 278
9.6 Decision tree for classifying statutory text units as relevant (rel.) or

irrelevant (irrel.) to the School of Public Health study 279
9.7 The box plot summarizes the results of all the experiments on each

of the tasks for Florida (FL). Each box plot describes performance in
terms of an F1-measure within a single experiment. The tasks included
identifying: AA (acting agent), PR (prescription), AC (action), GL
(goal), PP (purpose), ET (emergency type), RA (receiving agent), CN
(condition), TF (time frame) (Savelka and Ashley, 2015) 282

10.1 Excerpt of argument tree structure extracted automatically from a
case (see Moens et al., 2007, Fig. 5) 292

10.2 Overview of SMILE and IBP (see Ashley and Brüninghaus, 2009) 295
10.3 Schematic of LUIMA-Annotate (Grabmair et al., 2015) 301
10.4 LUIMA annotation environment 308

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:07:18, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xix — #19

Illustrations xix

10.5 Annotation with GATE Teamware of factors and components in a
trade secret case (Wyner and Peters, 2010) 309

10.6 WebAnno annotation of trade secret factors in the Mason case
(see Yimam et al., 2013) 310

11.1 LUIMA pipeline architecture (Grabmair et al., 2015) 317
11.2 LUIMA-Search: sample query (top) and sentence entry in Lucene

database index (bottom) 319
11.3 AP of LUIMA Versions v. Baseline for Eleven Queries and MAP

(Grabmair et al., 2015) 325
11.4 NDCG of LUIMA Versions v. Baseline for Eleven Queries and Average

NDCG (Grabmair et al., 2015) 326
11.5 Queries for cases with propositions playing particular argument

roles (from the V/IP Domain). Bold-faced terms represent existing
sentence-level argument-role types. Italicized terms represent legal
rule requirements 330

11.6 Queries for legal factors and argument roles (from the trade
secret domain). Bold-faced terms represent existing sentence-level
argument-role types plus additional legal factor and value-related types
(see Section 11.5.3). Italicized terms represent legal rule requirements.
Underlined italicized terms represent legal policies or values 331

11.7 New argument-role sentence-level types 333
11.8 Argument mining for the Mason case opinion. Annotations

(with WebAnno) are: trade secret misappropriation legal fac-
tors, core LUIMA sentence types, proposition/premise or
proposition/conclusion, and ARGUMENT SCHEMES 337

11.9 Query input data scheme. Nodes represent successive levels of a
DLF-style rule tree and reasoning chain. Here user seeks cases with
evidence and an evidence-based finding that “MMR vaccine can
cause intractable seizure disorder and death,” in connection with a
legal ruling on the “medical theory causally connects” requirement
of the Althen rule on causation-in-fact 341

11.10 General (left) and domain-specific (right) statutory types 344
11.11 Statutory conceptual queries from the Public Health Emergency domain 345
11.12 Texas LENA Statutory Network (Ashley et al., 2014) 348
12.1 Two templates for targeted legal hypotheses 357
12.2 Sample legal hypotheses CCLAs should target (from the trade secret

misappropriation domain) 358
12.3 Sample legal hypotheses CCLAs should target (from the V/IP

domain). Issues in italics. 358
12.4 RST-Tree for Mason excerpt showing some attribution information 371
12.5 Annotation environment for first-year law students 376

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:07:18, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xx — #20

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:07:18, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xxi — #21

Tables

2.1 From regulatory texts to business rules to annotations of business
process (see Figure 2.7) to predicate logic forms (Koetter et al., 2014,
p. 220) 61

3.1 Trade secret Factors (Aleven, 1997) 91
5.1 Legal factors and precedents regarding undue hardship (see Gordon,

2008b, c; Gordon and Walton, 2009; Walton and Gordon, 2009) 137
5.2 Some proof standards in Carneades (Gordon and Walton, 2006) and

legal counterparts (Weiss, 2003; Feller, 2015) 146
5.3 CanCMLAs serve as a bridge between legal texts and answers humans

seek? 165
6.1 Three ontology frames for legal norm, concept, and legal act with slot

fillers for library regulation (see Van Kralingen et al., 1999, pp. 1135–8,
1150–3) 177

6.2 Sample Socratic legal dialogue in a microworld with argument moves
(P=Plaintiff, D=Defendant) (Ashley, 2009a, 2011) 186

6.3 Cases in Property-Interests-in-Quarry Microworld (P=Plaintiff,
D=Defendant). Factor abbreviations are defined below in Table 6.4
(Ashley, 2009a, 2011) 189

6.4 Factors and policies in Property-Interests-in-Quarry Microworld
(P=Plaintiff, D=Defendant) (Ashley, 2009a, 2011) 193

6.5 Proposed tests in Property-Interests-in-Quarry Microworld
(P=Plaintiff, D=Defendant) (Ashley, 2009a, 2011) 195

6.6 Hierarchical LUIMA type system: Sentence Level, Formulation,
Mention, and Term Types 205

6.7 Hierarchical LUIMA Type System: Sentence level types 206
7.1 Sample inverted index 215

xxi
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:08:35, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xxii — #22

xxii Tables

8.1 Confusion matrix for three classes of sentence roles (top). Three
confusion tables below show total true positives (TPs), true negatives
(TNs), false positives (FPs), and false negatives (FNs) for each class 239

9.1 Problems for ML vs. KE approaches to statutory provision
classification (de Maat et al., 2010) 267

10.1 Some argument schemes annotated automatically (Feng and Hirst,
2011) 293

10.2 Sentence classification performance measurements (best values
printed in boldface) (Grabmair et al., 2015) 305

11.1 Eleven queries submitted to CLIR system (Grabmair et al., 2015) 318
11.2 Presuppositional information in two legal claim domains 336
11.3 Structured query translated from “Finding or conclusion that MMR

vaccine causes intractable seizure disorder” 340
12.1 Examples of DLF evidentiary reasons in Special Masters’ decisions

(left) and possible underlying policies or principles (right) 367

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:08:35, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xxiii — #23

Acknowledgments

The University of Pittsburgh School of Law provided summer Dean’s Scholarships
that supported writing this book. Notes for and drafts of this book evolved over the
course of teaching in the University of Bologna Erasmus Mundus doctoral program
in Law, Science, and Technology, an opportunity for which I thank ProfessorMonica
Palmirani. Vern Walker, Jaromir Savelka, and Thomas Gordon read prior drafts
and provided helpful suggestions for which I thank them. I am especially grateful to
my former Ph.D. student and continuing research colleague, Matthias Grabmair,
for his careful reading and many thoughtful suggestions. Matthias’s work on legal
text analytics, prediction and case-based argumentation and his and Jaromir’s work
applying machine learning to statutes convinced me that it was time to write this
book. Advising, collaborating with, and learning from Matthias have been some of
the great joys of my professional life as a teacher. I would never have had a profes-
sional life as a teacher, and I would never have completed this book, without my wife
Alida’s constant love and support. Our daughter Alexandra, who keeps us smiling as
we toil away with our research and writing, helped me select the cover art.

xxiii
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:10:08, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“FM” — 2017/5/31 — 10:36 — page xxiv — #24

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:10:08, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 1 — #1

part i

Computational Models of Legal Reasoning

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:11:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 2 — #2

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:11:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 3 — #3

1

Introducing AI & Law and Its Role in Future
Legal Practice

1.1. introduction

Artificial Intelligence and Law (AI & Law), a research field since the 1980s with roots
in the previous decades, is about to experience a revolution. Teams of researchers
in question answering (QA), information extraction (IE), and argument mining
from text planted the seeds of this revolution with programs like IBM’s Watson
and Debater and the open-source information management architectures on which
these programs are based. From these seeds, new applications for the legal domain
are sure to grow. Indeed, they are growing now. This book explains how.

Programs like Watson and Debater will not perform legal reasoning. They may
be able to answer legal questions in a superficial sense, but they cannot explain their
answers or make legal arguments. The open-source text analysis tools on which they
are based, however, will make a profound difference in the development of new
legal applications. They will identify argument-related information in legal texts that
can transform legal information retrieval into a new kind of conceptual information
retrieval: argument retrieval (AR).

Computational models developed by AI & Law researchers will perform the legal
reasoning. The newly extracted argument-related information will connect the com-
putational models of legal reasoning (CMLRs) and argument directly with legal
texts. The models can generate arguments for and against particular outcomes in
problems input as texts, predict a problem’s outcome, and explain their predictions
with reasons that legal professionals will recognize and can evaluate for themselves.
The result will be a new kind of legal app, one that enables cognitive comput-
ing, a kind of collaborative activity between humans and computers in which each
performs the kinds of intelligent activities that they can do best.

This chapter introduces the subject of AI & Law and explains the role it will
play in light of the new technologies for analyzing legal texts. It explains how these

3
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 4 — #4

4 Computational Models of Legal Reasoning

technologies enable new tools for legal practice using computational models of legal
reasoning and argumentation developed by AI & Law researchers.

Some questions addressed in this chapter include: What is the subject of Artificial
Intelligence and Law? What is a CMLR? What are the new technologies for auto-
mated QA, IE, and argument mining from texts? What roles will AI & Law CMLRs
and argument play given these new technologies? What are conceptual information
retrieval and cognitive computing, and what kind of legal app will support them?

1.2. ai & law and the promise of text analytics

The goal of much of the research in AI & Law has been to develop CMLRs that can
make legal arguments and use them to predict outcomes of legal disputes. A CMLR
is a computer program that implements a process evidencing attributes of human
legal reasoning. The process may involve analyzing a situation and answering a legal
question, predicting an outcome, or making a legal argument. A subset of CMLRs
implements a process of legal argumentation as part of their reasoning. These are
called computational models of legal argument (CMLAs).

CMLRs and CMLAs break down a complex human intellectual task, such as
estimating the settlement value of a product liability suit or analyzing an offer and
acceptance problem in a first-year contracts course, into a set of computational steps
or algorithm. The models specify how a problem is input and the type of legal result
to output. In between, the model builders have constructed a computational mech-
anism to apply domain knowledge to perform the steps and transform the inputs to
outputs.

In developing these models, researchers address such questions as how to rep-
resent what a legal rule means so that a computer program can decide whether it
applies to a situation, how to distinguish “hard” from “easy” legal issues, and the roles
that cases and values play in interpreting legal rules. Their answers to these ques-
tions are not philosophical but scientific; their computer programs not only model
legal reasoning tasks but also actually perform them; and the researchers conduct
experiments to evaluate how well their programs perform.

While AI & Law researchers have made great strides, a knowledge representation
bottleneck has impeded their progress toward contributing to legal practice. So far,
the substantive legal knowledge employed by their computational models has had to
be extractedmanually from legal sources, that is, from the cases, statutes, regulations,
contracts, and other texts that legal professionals actually use. That is, human experts
have had to read the legal texts and represent relevant parts of their content in a
form the computational models could use. An inability to automatically connect
their CMLRs directly to legal texts has limited the researchers’ ability to apply their
programs in real-world legal information retrieval, prediction, and decision-making.

Recent developments in computerized QA, IE from text, and argument min-
ing promise to change that. “A Question-answering system searches a large text

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 5 — #5

Introducing AI & Law and Its Role in Future Legal Practice 5

collection and finds a short phrase or sentence that precisely answers a user’s ques-
tion” (Prager et al., 2000). “Information extraction is the problem of summarizing the
essential details particular to a given document” (Freitag, 2000). Argument mining
involves automatically identifying argumentative structures within document texts,
for instance, premises and conclusion, and relationships between pairs of arguments
(ACL-AMW, 2016). All three technologies usually rely, at least in part, on applying
machine learning (ML) to assist programs in processing semantic information in
the texts.

A more general term for these techniques, text analytics or text mining, “refers to
the discovery of knowledge that can be found in text archives . . . [It] describes a set
of linguistic, statistical, and machine learning techniques that model and structure
the information content of textual sources for business intelligence, exploratory data
analysis, research, or investigation” (Hu and Liu, 2012, pp. 387–8). When the texts
to be analyzed are legal, we may refer to “legal text analytics” or more simply “legal
analytics,” the “deriving of substantively meaningful insight from some sort of legal
data,” including legal textual data (Katz and Bommarito, 2014, p. 3).

The text analytic techniques may open the knowledge acquisition bottleneck that
has long hampered progress in fielding intelligent legal applications. Instead of rely-
ing solely on manual techniques to represent what legal texts mean in ways that
programs can use, researchers can automate the knowledge representation process.

As a result, some CMLRs and CMLAs may soon be linked with text analysis
tools to enable the construction of a new generation of legal applications and some
novel legal practice tools. Specifically, CMLRs and CMLAs developed in the AI &
Law field will employ information extracted automatically from legal texts such as
case decisions and statutes to assist humans in answering legal questions, predicting
case outcomes, providing explanations, and making arguments for and against legal
conclusions more effectively than existing technologies can.

In a complementary way, the AI & Law programs can provide answers to questions
that are likely on the minds of technologists in commercial laboratories and start-
ups: Now that we are able to extract semantic information automatically from legal
texts, what can computer programs do with it? And, exactly what kind of information
should be extracted from statutes, regulations, and cases? The CMLRs demonstrate
how the new text processing tools can accommodate, adapt, and use the structures
of legal knowledge to assist humans in performing practical legal tasks.

Some CMLRs and CMLAs could help advanced AI programs make intelligent
use of legal sources. Certainly, the extracted information will be used to improve
legal information retrieval, helping to point legal professionals more quickly to rel-
evant information, but what more can be done? Can computers reason with the
legal information extracted from texts? Can they help users to pose and test legal
hypotheses, make legal arguments, or predict outcomes of legal disputes?

The answers appear to be “Yes!” but a considerable amount of research remains
to be done before the new legal applications can demonstrate their full potential.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 6 — #6

6 Computational Models of Legal Reasoning

Indeed, that is what this book is about: how best to perform that research. This book
will also assist practitioners and others in contributing to this research and in applying
the resulting legal apps. This includes commercial firms interested in developing
new products and services based on these models and public agencies wishing to
modernize their workflows.

1.3. new paradigms for intelligent technology
in legal practice

The technology of legal practice is changing rapidly. Predictive coding is transform-
ing discovery in litigation. Start-ups like Ravel (Ravel Law, 2015a), Lex Machina
(Surdeanu et al., 2011), and the Watson-based Ross (Ross Intelligence, 2015) (see
Sections 4.7 and 12.2) are garnering attention and enlisting law firm subscribers.
These and other developments in text analytics offer new process models and tools
for delivering legal services, promising greater efficiency and, possibly, greater public
accessibility.

These changes present challenges and opportunities for young attorneys and com-
puter scientists, but it has not been easy to predict the future of legal practice.
Declines in hiring by law firms have led to reductions in the number of law school
applicants. Prospective applicants weigh the chances of gainful employment against
the size of their student loans and look elsewhere. There is uncertainty about what
law-related tasks the technology can perform. After citing press, academic, and com-
mercial predictions of “the imminent and widespread displacement of lawyers by
computers,” Remus and Levy argue persuasively that the predictions “fail to engage
with technical details . . . critical for understanding the kinds of lawyering tasks that
computers can and cannot perform. For example, why document review in discovery
practice is more amenable to automation than in corporate due diligence work, and
why the automation of ... sports stories does not suggest the imminent automation of
legal brief-writing” (Remus and Levy, 2015, p. 2).1

It is also unclear what law students need to learn about technology. Law firms
have long called for law schools to graduate “practice-ready” students but even firms
seem confused about the kinds of technology the firms will require, whether to
develop the technology in house or rely on external suppliers, and the skills and
knowledge that would best prepare law students for evaluating and using the new
technologies.

William Henderson, a law professor at Indiana University’s Maurer School of
Law, has argued that legal processing engineering has changed law practice and will

1 While I agree that these predictions of displacing attorneys are overblown, Remus andLevy have largely
overlooked the AI & Law research reported in this book, research that will enable AR and cognitive
computing to assist attorneys in legal practice.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 7 — #7

Introducing AI & Law and Its Role in Future Legal Practice 7

continue to do so, necessitating that law schools teach students process engineering
skills.

Because of the emphasis on process and technology now taking hold within the
legal industry, the practical technical skills and domain knowledge [now taught]
may be inadequate for a large proportion of law students graduating in the year
2015 . . . [Students] . . . are unprepared to learn that law is becoming less about jury
trials and courtroom advocacy and more about process engineering, predictive cod-
ing, and the collaborative and technical skills those processes entail. (Henderson,
2013, pp. 505f)

Process engineering (or “reengineering”) has been defined in the business and
information management literature as a “change process,”

the aim of [which] is quick and substantial gains in organizational performance
by redesigning the core business process, [addressing] a need to speed up the pro-
cess, reduce needed resources, improve productivity and efficiency, and improve
competitiveness. (Attaran, 2004, p. 585)

Information Technology (IT) has been called “the most effective enabling technol-
ogy” for such business process reengineering, establishing “easy communication,
improving the process performance,” and helping “the reengineering effort by
modeling, optimizing and assessing its consequences” (Attaran, 2004, p. 595).

Henderson emphasizes the role process engineering has played in the evolution of
legal work, a concept he draws fromRichard Susskind’s The End of Lawyers?, accord-
ing to which legal work is evolving from bespoke (or customized) to standardized,
systematized, packaged, and, ultimately, to a commoditized format:

These changes [from legal work that is bespoke to . . . commoditized] are made
possible by identifying recursive patterns in legal forms and judicial opinions, which
enables the use of process and technology to routinize and scale very cheap and
very high quality solutions to the myriad of legal needs. [F]ormerly labor-intensive
work that has traditionally been performed by entry-level United States law school
graduates ... is now being done by Indian law graduates [working for Legal Process
Outsourcers (LPOs)], who are learning how to design and operate processes that
extract useful information from large masses of digital text. Not only are the Indian
law graduates getting the employment, they are learning valuable skills that are
entirely – entirely – absent from U.S. law schools. (Henderson, 2013, pp. 479, 487)

In focusing on the use of process and technology to design cost-efficient methods
to deliver legal solutions, Henderson agrees with Susskind that commoditization is
the culmination of this evolution of legal work.

A legal commodity . . . is an electronic or online legal package or offering that
is . . . made available for direct use by the end user, often on a DIY [Do It Your-
self] basis. [T]he word “commodity” in a legal context [refers] to IT-based systems
and services . . . [that are] undifferentiated in the marketplace (undifferentiated in

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 8 — #8

8 Computational Models of Legal Reasoning

the minds of the recipients and not the providers of the service). For any given
commodity, there may be very similar competitor products. (Susskind, 2010, p. 31ff)

In other words, the result of legal commoditization is a software service or product
that anyone can purchase, download, and use to solve legal problems without hir-
ing an attorney, or, in current parlance, a kind of computerized legal application, a
“legal app.”

1.3.1. Former Paradigm: Legal Expert Systems

The two concepts, process engineering and commoditization, raise interesting ques-
tions. If process engineering of legal services is rethinking how to deliver “very cheap
and very high quality” solutions, who or what will be responsible for tailoring those
solutions to a client’s particular problem? If, as Susskind mentions, commoditization
means “Do It Yourself,” does that mean the client is on its own? In other words, what
kind of support does the legal app provide? In particular, can the legal app perform
some level of customization?

Not so long ago, the paradigm computational model for designing a legal app
would have been a legal expert system. As Susskind, the developer of a pioneering
legal expert system, defined them,

“expert systems” are computer applications that contain representations of knowl-
edge and expertise . . .which they can apply –much as human beings do – in solving
problems, offering advice, and undertaking a variety of other tasks. In law, the idea
is to use computer technology to make scarce expertise and knowledge more widely
available and easily accessible. (Susskind, 2010, p. 120f)

Typically, legal expert systems deal with narrow areas of law but have enough
“knowledge and expertise” in the narrow domain to ask a client user pertinent ques-
tions about his/her problem, to customize its answer based on the user’s responses,
and to explain its reasons. Their “expertise” comprises heuristics that skilled prac-
titioners use in applying legal rules to specific facts. These heuristics are “rules of
thumb,” frequently useful but not guaranteed to lead to a correct result (Waterman
and Peterson, 1981).

The rules are represented in a declarative language specifying their conditions and
conclusion. They are derived through a largely manual knowledge acquisition pro-
cess: manually questioning human experts, presenting themwith problem scenarios,
inviting them to resolve the problems, and asking themwhat rules the experts applied
in analyzing the problem and generating a solution (Waterman and Peterson, 1981).

Waterman’s Product Liability Expert System
Don Waterman’s legal expert system (let’s call it W-LES) is a classic example from
the 1980s of a CMLR that performed limited but automatic legal reasoning around
a practical problem. It provided advice on settlement decisions of product liability

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 9 — #9

Introducing AI & Law and Its Role in Future Legal Practice 9

figure 1.1. Heuristic rules defining loss and strict liability (Waterman and
Peterson, 1981)

disputes (Waterman and Peterson, 1981). The inputs to W-LES were descriptions of
disputes involving product liability. As outputs, W-LES recommended settlement
values and explained its analyses.

The recommendations of W-LES whether to settle a legal dispute and for how
much were based on heuristic rules, including claims adjusters’ rules for calculating
damages and “formalized statements of the California legal doctrine for product
liability as stated in statutes, court opinions, and legal treatises” (Waterman and
Peterson, 1981, p. 15). Figure 1.1 illustrates the program’s heuristic rules defining three
kinds of losses and the claim of strict liability.

W-LES mechanically processed a fact situation by applying these heuristic rules
in a kind of forward chaining. Its inference engine cycled through the rules, testing if
any could “fire,” that is, if a rule’s conditions were satisfied by the facts in the database
representing the current problem. If so, the applicable rule did fire and its deduced
consequences were added to the database. The inference engine repeatedly cycled
through its rules until no more rules could apply.

Ideally, by the end of the process, the rules whose conclusions represented a solu-
tion to the problem have “fired” successfully, yielding a prediction and an assessment
(or in other legal expert systems, a selection and completion of a relevant legal
form). The explanation of the result consists of an “audit trail” or trace back through
the rules that fired and the satisfied conditions that led to their firing (Waterman and
Peterson, 1981).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 10 — #10

10 Computational Models of Legal Reasoning

Other expert systems applied rules through backward chaining. The inference
engine begins with a set of desired goals, picks one, and cycles through its database
of rules (and facts) in search of a rule whose conclusion is the desired goal. Then, it
adds that rule’s conditions to the set of desired goals and repeats the cycle until all
of the goals are satisfied or there are no more rules (or facts) with which to satisfy
remaining goals (Sowizral and Kipps, 1985, p. 3).

Waterman faced three design constraints in developing legal expert systems: legal
rules vary across jurisdictions; legal rules employ ill-defined legal concepts; and
inferences in the proof are uncertain.

First, different states’ legal rules of product liability differ, for instance, in whether
the rule of contributory or comparative negligence applies. If contributory neg-
ligence applies, the plaintiff’s negligence eliminates liability. If comparative neg-
ligence, the plaintiff’s negligence proportionately reduces the plaintiff’s recovery.
Waterman addressed this problem by representing multiple states’ rules and allow-
ing users to specify which rules to apply in order to demonstrate the differences in
outcome.

Second, the legal rules employed some legal concepts without defining them
(i.e., “imprecise terms” in Waterman’s parlance), such as “reasonable and proper”
or “foreseeable” (Waterman and Peterson, 1981, p. 18). Waterman considered a num-
ber of possible solutions. These included providing more “rules that describe how an
imprecise term was used previously in particular contexts,” displaying “brief descrip-
tions of instances of prior use of the imprecise term” and letting the user decide, com-
paring “prior cases in which the term applied, and provid[ing] a numeric rating that
indicates the certainty that the rule . . . applies . . . In the end, he settled on having
the system ask the user if the term applied” (Waterman and Peterson, 1981, p. 26).

Third, litigators are uncertain about proving factual issues and applicable legal
doctrine. Waterman’s suggestions included incorporating the uncertainties as addi-
tional premises within each rule or treating uncertainties as a separate rule to be
applied after other rules have been considered. Users would “consider a case inde-
pendently of . . . uncertainty, reach a tentative conclusion, and then adjust that
conclusion by some probabilistic factor that represents their overall uncertainty
about the case” (Waterman and Peterson, 1981, p. 26).

Modern Legal Expert Systems
Although no longer the paradigm, legal expert systems are still widespread in use in
a number of contexts.

Neota Logic provides tools for law firms, law departments, and law school students
to construct expert systems. Its website offers examples of computerized advisors
concerning questions involving, for instance, the FCPA, bankruptcy risks in cross-
border transactions, and the Family and Medical Leave Act (Neota Logic, 2016) (see
Section 2.5.1).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 11 — #11

Introducing AI & Law and Its Role in Future Legal Practice 11

CALI, the Center for Computer-Assisted Legal Instruction, and IIT Chicago-
Kent College of Law’s Center for Access to Justice & Technology, overseen by
Professor Ron Staudt, provide a web-based tool to author expert systems. Using the
tool, non-programmers with legal skills can create expert systems called A2J Guided
Interviews® that lead self-represented litigants through a legal process resulting in a
document to be filed in court (A2J, 2012).

As discussed in Section 2.5, firms employ management systems with expert-
systems-style business rules to monitor whether their processes comply with relevant
regulations.

While still widely used, legal expert systems may not be the paradigm “killer
app” for the legal domain. There are at least three reasons for this. First, the tech-
niques developed to enable expert systems to deal with uncertain and incomplete
information tend to be ad hoc and unreliable. Second, the manual process of acquir-
ing rules is cumbersome, time-consuming, and expensive, a knowledge acquisition
bottleneck that has limited the utility of expert systems in law and many other fields
(Hoekstra, 2010). Third, text analytics cannot solve this particular knowledge acqui-
sition bottleneck. While the new text analytics can extract certain kinds of semantic
legal information from text, they are not yet able to extract expert systems rules.

From time to time, we will return to expert systems, their promise, and their limi-
tations in this book; suffice it to say here that if the legal app is to customize solutions
to the particularities of the user’s problem, it may be necessary to find some other
paradigms.

1.3.2. Alternative Paradigms: Argument Retrieval
and Cognitive Computing

Unlike expert systems, the two alternative paradigms, AR and cognitive computing,
do not purport to solve users’ legal problems on their own. Instead, computer pro-
grams extract semantic information from legal texts and use it to help humans solve
their legal problems.

Conceptual information retrieval, of course, is not new. AI has long sought to
identify and extract semantic elements from text such as concepts and their relation-
ships. As defined by Sowa, “concepts represent any entity, action, or state that can
be described in language, and conceptual relations show the roles that each entity
plays” (Sowa, 1984, p. 8). Similarly, it has long been a goal of AI to make informa-
tion retrieval smarter by using the extracted semantic information to draw inferences
about the retrieved texts. Roger Schank employed the term, “conceptual information
retrieval” in 1981 to describe:

a system to deal with the organization and retrieval of facts in relatively uncon-
strained domains (for example, . . ., scientific abstracts). First, the system should be
able to automatically understand natural-language text – both input to the database

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 12 — #12

12 Computational Models of Legal Reasoning

and queries to the system . . . in such a way that the conceptual content or meaning
of an item can be used for retrieval rather than simply its key words . . . If categories
are specified by concepts, and if the natural-language analyzer parses text into a
conceptual representation, then inferences can be made from the conceptual rep-
resentations (or meanings) of new items to decide which categories they belong in.
(Schank et al., 1981, pp. 98, 102)

Nor is conceptual legal information retrieval new. Pioneering efforts to achieve
conceptual retrieval in the legal domain were undertaken by Hafner (1978) and
Bing (1987). As discussed in Sections 7.7 and 11.2, modern legal IR services take into
account the substantive legal concepts and topics of interest that users intend to tar-
get. Other recent work has focused on extending conceptual information retrieval
systems so that they return legal information conceptually related not just to the
query but to the problem to which the user intends to apply the targeted information
(see Winkels et al., 2000).

Today, conceptual legal information retrieval can be defined as automatically
retrieving relevant textual legal information based on matching concepts and their
roles in the documents with the concepts and roles required to solve the user’s legal
problem. As the definition makes clear, conceptual legal information retrieval is dif-
ferent from ordinary legal IR. It focuses on modeling human users’ needs for the
information they seek in order to solve a problem, for instance in the legal argument
a user seeks to make, and on the concepts and their roles in that problem-solving
process.

Even focusing conceptual legal IR on helping users construct viable arguments
in support of a claim or counter an opponent’s best arguments is not new. Dick
and Hirst (1991) explored manually representing cases in terms of schematic argu-
ment structures to support lawyers’ “information seeking . . . to build an argument to
answer the problem at hand.” At that time, however, the authors could only assume
“that in due course, . . . both language analysis and language generation by machine
will be possible.”

Their assumption has finally come true. For years, robust means for extracting
such conceptual, argument-related information from natural language texts for pur-
poses of conceptual legal information retrieval were not available. Today, however,
language analysis tools that can automatically identify argument-related information
in case texts are finally available, and with them a new paradigm is born: robust con-
ceptual legal IR based on argument-related information, or AR as it is referred to in
Section 10.5.

Cognitive computing is a second new paradigm for system development. Despite
its name, cognitive computing is not about developing AI systems that “think” or
perform cognitive tasks the way humans do. The operative unit of cognitive com-
puting is neither the computer nor the human but rather the collaborating team of
computer and human problem-solver(s).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 13 — #13

Introducing AI & Law and Its Role in Future Legal Practice 13

[I]n the era of cognitive systems, humans and machines will collaborate to pro-
duce better results, each bringing their own superior skills to the partnership. The
machines will be more rational and analytic – and, of course, possess encyclopedic
memories and tremendous computational abilities. People will provide expertise,
judgment, intuition, empathy, a moral compass, and human creativity. (Kelly and
Hamm, 2013)

In a cognitive computing paradigm, human users are ultimately responsible for
customizing their own solution using a legal app, but the commoditized legal service
technology should apprise the humans of the need for customization and support
them with customized access to relevant legal information to help them construct
a solution. That is, the legal app will not only select, order, highlight, and summa-
rize the information in a manner tailored to a human user’s specific problem but
also explore the information and interact with the data in new ways not previously
possible.

In order for this approach to succeed, the technology does not need to solve the
user’s problem. It will not be a legal expert system. It will, however, need to have some
“understanding” of the information at its disposal and of the information’s relevance
in the human’s problem-solving process and to make the information conveniently
available at the right times and in the right contexts. In this respect, AR is consistent
with cognitive computing where responsibility for finding and applying resources
to solve a user’s problem is divided between intelligent tasks the computer can best
perform and those addressed to human users’ expertise.

Expert systems and cognitive computing paradigms differ in the sources of their
respective “knowledge.” In the former, expertise is embodied in rules that human
experts apply in solving such problems, rules that usually have been constructed
manually by engineers in the knowledge acquisition process.

In the cognitive computing paradigm, in contrast, the knowledge is embodied in
the corpus of texts from which the program extracts candidate solutions or solution
elements and ranks them in terms of their relevance to the problem. This assumes,
of course, that an available corpus of texts contains information relevant to the type
of problem. For instance, if the problem is a fact situation about which to make
arguments concerning a legal claim, a corpus of legal cases involving that type of
claim would be required.

The technology cannot read the texts in the sense that humans read, but it will
have techniques for intelligently processing the texts, identifying those elements that
are relevant to a problem, and bringing them to the user’s attention in an appropri-
ate way. Significantly, the program’s knowledge for assessing relevance, that is, for
identifying, ranking, and presenting candidate solutions or elements, is acquired not
primarily manually but automatically by extracting patterns from some collection of
domain-specific data using ML.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 14 — #14

14 Computational Models of Legal Reasoning

1.3.3. Toward the New Legal Apps

At least, that is the goal. Although researchers in university and commercial settings
recognize its extraordinary potential, at the time of writing, probably no one really
knows exactly how to implement cognitive computing in the legal domain. Clearly,
it will not be easy, but it does seem feasible.

AI & Law researchers and technologists are actively engaged in applying the
new QA, IE, and argument mining techniques to problem-solving processes in the
legal domain. They see the potential for modeling legal reasoning, argumentation,
and prediction of integrating computational techniques that have been developed
over the years to represent statutory rules and case decisions. The AI & Law tools
illustrate the elements in legal texts that the new text processing techniques should
target and the legal tasks that can then be accomplished.

They recognize, too, that AI & Law research has identified design constraints that
limit, or firmly guide, what CMLRs can accomplish. Sometimes the constraints
can be finessed or ignored given the task a legal app addresses, but it is good to
know about them in advance. The design constraints will help technologists avoid
reinventing the wheel or charging down dead ends.

The next few years will be exciting times in the development of legal practice and
the history of AI & Law! The aim of this book is to present the available tools, explore
how they can be integrated with the new text processing tools, and equip readers to
participate in this technological revolution.

1.4. what watson can and cannot do

But wait a minute! Isn’t the revolution already over? IBM’s Watson performs remark-
able feats of QA based on IE from text. Its cousin, theDebater program alreadymines
arguments from text. Perhaps one can simply turnWatson andDebater loose on legal
texts and watch them perform legal reasoning, no?

No, as already noted, programs like Watson and Debater will not perform legal
reasoning. This section addresses why not. At the same time, Watson offers a con-
ceptual framing and text analytic tools that can be instrumental in addressing the
challenge of building programs that can perform legal reasoning from text.

Highlighting Watson and Debater here is not meant to suggest that the future
development of intelligent tools for digital age legal practice depends on IBM’s pro-
prietary techniques. In fact, Watson is based on an open-source text processing and
IE tool, the Unstructured Information Management Architecture (UIMA). An alter-
native to UIMA, the open-source GATE annotation environment, was used in topic
labeling in connection with the Debater research.

In designing and explaining the Watson technology, however, IBM researchers
have framed some of the component tasks of text analytics. It is convenient to take
advantage of that framing in order to suggest the tasks’ potential application in the
legal domain.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 15 — #15

Introducing AI & Law and Its Role in Future Legal Practice 15

1.4.1. IBM’s Watson

In February 2011, “Jeopardy!,” a TV game show popular with older retirees and
younger nerds, captured the imagination of the American public. The game’s setup
and rules are straightforward: longtime host Alex Trebek presides as three contestants
face a game board with six categories. Each category has five items of increasing
value. Each item comprises a small window; when opened it displays an answer.
The contestants race to hit the buzzer first for a chance to state the question that
goes with the answer, win the value of the item, and choose the next category and
item. The cardinal rule is that the contestant’s response, his or her “answer,” must
be in the form of a question.

The game show had been an evening TV staple since 1984, but this evening was
different: one of the three contestants was not human. A team at IBM Research led
by David Ferrucci had designed a computer system named “Watson” especially to
participate in the “Jeopardy!” game on prime time TV against the two top human
champions: Brad Rutter, whose winnings from previous appearances on “Jeopardy!”
topped $3.25 million, and Ken Jennings, who, with a winning streak of 74 games,
was nearly a fixture of the show, himself.

By the end of three consecutive nights of play, Watson had beaten the human
champions convincingly. It was a tour de force for IBM Research whose Deep
Blue chess-playing program had beaten Gary Kasparov, the world’s reigning human
chess champion, 14 years before.

Of course, Watson was fallible. Famously it flubbed in “Final Jeopardy!,” the last
round of the evening when the host announces the category and the show jumps to a
commercial break. In the meantime each, contestant wagers an amount up to his or
her current total score. When the host finally reveals the “Final Jeopardy!” answer,
the contestants have 30 seconds to write their responses on an electronic display,
accompanied by a now familiar jingle that has come to epitomize the tension of
thinking under time pressure (i.e., “Think,” composed by Merv Griffin, the true
genius of the “Jeopardy!” gameshow).

On this evening, the “Final Jeopardy!” category was “U.S. Cities for $400.” The
answer was “Its largest airport is named for a World War II hero; its second largest
for a World War II battle.” “Think” jingled to its inevitable conclusion, and the host
asked each contestant to reveal his, or its, question.

The audience groaned when Watson’s response appeared, “What is Toronto?????”
Probably, it was not because the audience was amazed that Watson had gotten it
wrong. The correct response was “What is Chicago?” Anyone could see that the
question was tricky. One might know that Chicago’s second largest airport, Midway
Airport, was named for a famous World War II naval battle in the Pacific, but hardly
anyone knows that Navy flying ace, Lieutenant Commander Edward Henry “Butch”
O’Hare, was a hero of that war.

Instead, the audience probably was amazed that Watson did not know a common-
sense bit of trivia: Everyone knows that Toronto is not a U.S. city!

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 16 — #16

16 Computational Models of Legal Reasoning

Although Watson’s blunder was not costly (Watson wagered a mere $947), it was
revealing: Watson does not have knowledge of facts and information “hard wired” in
some way such as expert rules. Rather, for each question/answer (Q/A) type, Watson
learns how to extract candidate answers to the question (or questions to the answer
in “Jeopardy!” speak) from millions of texts in its database. For each Q/A type, it
also learns the kinds of evidence that enable it to recognize answers to that type of
question, evidence in the form of syntactic features and semantic clues in the text,
where the semantic clues include references to certain concepts and relations. For
each Q/A type, Watson has also learned how much confidence to have in the various
types of evidence associated with the texts. As indicated by the repeated question
marks, Watson had little confidence in its response (Ferrucci et al., 2010).

Watson learns from a training set of documents, for which humans marked-up
or “annotated” many instances of each type of Q/A pair. The annotated training
texts serve as examples of how to extract information about that type of question and
answer. Watson learns the how-to-extract information from the training examples
and can apply it to extract information from other texts that have not been marked
up, generalizing the how-to information in the process (Ferrucci et al., 2010).

In explaining Watson’s response, two IBM Watson project researchers pointed out
that Chicago was a very close second on Watson’s list of possible answers, but that
Watson had not foundmuch evidence to connect either of the city’s airports toWorld
War II. In addition, Watson had learned that category phrases like “U.S. Cities” are
not very dispositive. If “This U.S. city’s . . .” had appeared in the answer, Watson
would have given US cities more weight. Finally, there are cities named Toronto in
the United States, for example, Toronto, IL, Toronto, IN, Toronto, IA, Toronto, MI,
Toronto, OH, Toronto, KS, and Toronto, SD, and Toronto, Canada does have an
American League baseball team (Schwartz, 2011).

Applying Watson in Law
It appears that IBMwould like to applyWatson technology (also known as DeepQA)
to the legal domain (see Beck, 2014).2 According to IBM General Counsel, Robert
C. Weber,

Pose a question and, in milliseconds, Deep QA can analyze hundreds of millions
of pages of content and mine them for facts and conclusions . . . Deep QA won’t
ever replace attorneys; after all, the essence of good lawyering is mature and sound
reasoning . . . But the technology can unquestionably extend our capabilities and
help us perform better . . . At IBM, we’re just starting to explore about how Deep
QA can be harnessed by lawyers. (We’re pretty sure it would do quite well in a
multi-state bar exam!) But already it’s becoming clear that this technology will be
useful in a couple of ways: for gathering facts and identifying ideas when building

2 Ross Intelligence (2015), discussed at Section 12.2, applies Watson technology in the legal domain.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 17 — #17

Introducing AI & Law and Its Role in Future Legal Practice 17

legal arguments. The technology might even come in handy, near real-time, in the
courtroom. If a witness says something that doesn’t seem credible, you can have an
associate check it for accuracy on the spot. (Weber, 2011)

Watson’s mistake, however, suggests some of the challenges for applying Watson
technology to the legal domain. One can but imagine the game of “LEGAL Jeop-
ardy!” Host Alex reveals “The Category is: Sports law.” Ken Jennings selects “Sports
law for $1.2 Million”! The window slides open: The answer is: “American League
Baseball teams that cannot legally hire replacement workers during an economic
strike.”

A buzzer sounds. “Watson?” Alex responds.
Watson replies, “What are the Toronto Blue Jays?”
Alex smiles. “Correct! The Toronto Blue Jays cannot hire replacement workers

during an economic strike.”
This time, knowing that Toronto is not a U.S. city is certainly a relevant juris-

dictional consideration in legally analyzing the issue. Unlike the other American
League teams, the Toronto Blue Jays are not subject to U.S. labor law, but to
provincial labor law (Ontario) where the rules on hiring replacement workers dif-
fer, according to Lippner (1995), a law review article regarding the 1995 baseball
strike.

Watson, however, would not necessarily need to know Toronto’s location or
nationality in order to answer the question correctly. Watson does not have a set
of rules specifying the nation in which Toronto is located or the laws that apply to
it, nor rules for reasoning about whether Canadian federal or Ontario provincial law
would govern this labor law issue. But that is not how Watson would answer such
questions, anyway.

As long as Watson’s corpus contains the above law review article, an appropriately
trained Watson could learn to identify it as relevant to this type of question, extract
from it the relevant answer, and assess its confidence in the answer’s responsiveness.

This is a legal question, however. When it comes to fielding legal questions, one
expects more than just an answer. One expects an explanation of why the answer
is well-founded. Presumably, Watson could not explain the answer it had extracted.
Explaining the answer requires one to reason with the rules and concepts relevant
to choice of law and legal subject matter, knowledge that Watson does not have and
could not use.

An appropriately trained Watson could have learned types of evidence for recog-
nizing relevant question and answer pairs, including semantic clues, for instance,
concepts and relations like “legally hire,” “replacement workers,” “economic strike.”
It could also have learned how much weight to accord to this evidence in assessing
its confidence that the question and answer are related.

Whether this kind of evidence is sufficient for Watson to explain the answer in a
manner acceptable from a legal viewpoint is another matter. Watson’s how-to-extract

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 18 — #18

18 Computational Models of Legal Reasoning

knowledge does not appear to extend that far, yet (but see the discussion of IBM’s
Debater program in Section 1.4.3).

On the other hand, the author of the law review article does have that legal knowl-
edge and has summarized in his article how application of that knowledge (i.e.,
of the rules and cases concerning jurisdiction, legal subject matter, and choice of
law) justifies his conclusion. If Watson can be trained to recognize and extract those
arguments explaining legal conclusions, it would be able to point human users to
the author’s explanation, even if Watson could not itself construct the explanation
from first principles. Even then, of course, there is an issue about whether the article
and its explanation are still current.

1.4.2. Question Answering vs. Reasoning

This raises a question: Can a program based on Watson’s technology ever really rea-
son? Could it, for example, analyze a first-year law school problem in contract law?
In the above quote, IBM’s Counsel, Robert Weber emphasized “sound reasoning”
and declared parenthetically that “We’re pretty sure it [Watson] would do quite well
in a multistate bar exam!” (Weber, 2011).

But, could the Watson technology handle the essay part of a state bar exam? Or
could it do so only if someone (Google?) has happened to store the contents of old
exam blue books (assuming computerized analysis ever manages to “read” law stu-
dents’ handwriting, a superhuman task if ever there was one)? Will it only(!) be a
highly sophisticated technique for retrieving past answers to similar questions, and,
perhaps, for highlighting the evidence (syntactic features and semantic clues in the
text concerning concepts and relations) that justifies its confidence in its answer?
Will it be able to adapt past arguments to a new problem? Or will it be able to solve
the new problem from first principles and explain its reasoning?

In order to gain some insight into the kind of legal reasoning involved in address-
ing a bar exam essay question, let’s briefly examine a classic CMLR by Ann Gardner
(her program was unnamed but let’s call it AGP) which already in the 1980s had
analyzed legal issues from typical first-year law school contracts course final exam
problems (Gardner, 1987).

AGP is offered here as an example of a systematic approach to computation-
ally modeling legal reasoning about exam questions involving contract law and as
a contrast to the Watson approach.

Gardner’s First-Year Contracts Problem Analyzer
Anyone who has attended law school will recognize (probably with a shudder) the
type of problem AGP handled: A putative buyer and seller exchange two weeks’
worth of chronologically overlapping and sometimes inconsistent telegrams and pur-
chase orders concerning a possible purchase of a carload of salt. Having sent an

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 19 — #19

Introducing AI & Law and Its Role in Future Legal Practice 19

figure 1.2. ATN for offer and acceptance problems with four states: (0) no relevant
legal relations; (1) offer pending; (2) contract exists; (12) contract exists and proposal to
modify is pending (Gardner, 1987, p. 124)

apparent acceptance of an apparent offer, the buyer finds a cheaper source and sends
a telegram purporting to reject. The question is “Has a contract been concluded?”

The inputs to AGP were descriptions of this type of offer and acceptance problem
represented by a human (Gardner) in a logic language (illustrated below). AGP used
an augmented transition network (ATN) to analyze such problems and output an
analysis of the contracts issues.

An ATN is a graph structure that analyzes problems involving sequences of
events as a series of states and possible transitions from one state to the next. It is
“augmented” with rules that define each such possible state transition.

AGP’s ATN, shown in Figure 1.2, represented legal states in the analysis of an offer
and acceptance problem in contract law (i.e., no relevant legal relations (0), offer
pending (1), contract exists (2), contract exists and proposal tomodify is pending (12)).
The arcs represented events or transitions from one legal state to another: from no
relevant legal relation (0) to an offer pending (1) via an offer, from an offer pending
(1) to contract exists (2) via an acceptance, etc.

Each arc had associated with it the rules of contract law dealing with offer and
acceptance. These rules set forth the legal requirements for moving from one state

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 20 — #20

20 Computational Models of Legal Reasoning

to the next. For instance the offer arc from (0) to (1) has one associated rule, the def-
inition of “offer,” based on Restatement of Contracts, Second, section 24: “An offer is
the manifestation of willingness to enter into a bargain, so made as to justify another
person in understanding that his assent to that bargain is invited and will conclude
it” (Gardner, 1987, p. 142).

AGP processed events in the problem in chronological order, storing its analysis in
a detailed analysis tree and summarizing it in an output summary tree. The program
repeats the following steps until it has processed each event in the problem:

1. Take the next event in the problem.
2. Find out the current state from the detailed analysis tree. Determine from the

ATN the possible arcs out of that state.
3. For each possible arc, test if the event satisfies the rules associated with the arc

and update the detailed analysis tree with the test results.
4. If the test involves a “hard” legal question (see below), that is, presents two

legally defensible ways of evaluating the event, insert a branch for each
interpretation into the detailed analysis tree.

5. Edit the detailed analysis tree to update an output summary tree of network
states representing the different “interpretations” of the events.

For example, AGP starts with a first event:

On July 1 Buyer sent the following telegram to Seller: “Have customers for salt and
need carload immediately.Will you supply carload at $2.40 per cwt?” Seller received
the telegram the same day.

The events were input not in English text, but in a logic-based representation
language. AGP could not read text, so a human had to manually represent that infor-
mation in the logic representation (i.e., predicate logic, defined in Section 2.3.2). For
instance, some excerpts of the representation are:

(send Send1) (agent Send1 Buyer) (ben Send1 Seller) (obj Send1 Telegram1)
(telegram Telegram1) (sentence S13) (text S13 “Will you supply carload at $2.40 per
cwt?”)
(prop-content S13 Prop13) (literal-force S13 Q13)(yes-no-question Q13)
(effective-force S13 R13) (request R13).
(Gardner, 1987, pp. 89, 105, 111)

In the above representation, Send1 is an instance of a Send with the Buyer as the
Agent, the Seller as the Beneficiary, and Telegram1, an instance of a telegram, as the
Object of the sending. S13 is a sentence whose text is quoted, whose propositional
content is represented in Prop13 (defined elsewhere), whose literal force as a speech
act is to pose a question but which also effectively presents a request (Gardner, 1987,
pp. 89, 105, 111).

In step (3), testing if the event satisfies the arc, the program collects the rules associ-
ated with the arc. Like the events, all of the contracts rules were translated manually

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 21 — #21

Introducing AI & Law and Its Role in Future Legal Practice 21

into the logical language. For instance, the rule associated with the arc from (0) to (1)
defining an “offer,” Restatement of Contracts, Second, section 24 (above), includes
rule antecedents and (italicized) predicates like the following:

1. There is amanifestationwith some symbolic content about an exchange by some
agent, the prospective offeror.

2. The terms of the exchange are specified with reasonable certainty.
3. By means of the content of the manifestation, the prospective offeror has per-

formed some speech act that invites acceptance by a prospective offeree of a
proposal for the exchange.

4. The offeree is invited to furnish consideration in the exchange and the prospec-
tive offeror is apparently ready to be bound to a contract for the exchange,
without doing anything more (Gardner, 1987, pp. 142).

The program checks if the rule’s antecedents are satisfied given the facts of all
the events processed so far plus the new event. Basically, AGP attempts to bind the
artifacts of the problem to the variables in the rule guided by very limited information
about what the facts and the antecedents mean.

At any step, there are multiple possible ways to bind the facts and antecedents.
The program needs to search through all the possible bindings, leading to a detailed
analysis tree withmultiple branches. As noted, “hard” questions also lead to branches
representing alternative reasonable interpretations. In order to prevent an “exponen-
tial explosion” of alternative paths, an editing function prunes the branching analysis
using heuristics to focus on the most promising branches.

Incidentally, recent work on so-called “smart” contracts employs finite state
automata related to the ATN in Gardner’s CMLR (Flood and Goodenough, 2015,
p. 42). Researchers have also applied heuristic rules to model the United Nations
Convention on the International Sale of Goods and to deduce the temporal legal
states of affairs as events occur in the life of a contract (see Yoshino, 1995, 1998).

Gardner’s heuristics are a typical example of an AI approach to enable a computer
program to handle a task that is taxing even for humans. Law students need to decide
on which of the multitude of cross-communications and their contents to focus at
any point in their analyses of whether there is a contract.

Gardner’s Algorithm for Distinguishing Hard and Easy Legal Questions
Law students (legal practitioners and judges) also need to learn how to distinguish
hard and easy questions of law, a determination that takes into account an appre-
ciation of the facts and the substantive legal issues, as well as procedural issues
concerning who has the burden of raising the question.

This is a problem that has deep roots in legal philosophy (see, for example, Fuller’s
critique of Hart’s assertion that legal terms have core and penumbralmeanings (Hart,
1958; Fuller, 1958)). It also has very practical ramifications. A clinic intake advisor,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 22 — #22

22 Computational Models of Legal Reasoning

figure 1.3. Gardner’s heuristic method for distinguishing hard and easy legal questions
(Gardner, 1987; Rissland, 1990)

for instance, needs a way to distinguish clients’ easy and hard legal questions in order
to direct them appropriately.

From the viewpoint of computationalmodeling, however, distinguishing hard and
easy questions of law presents a conundrum. As Gardner noted, for a computer pro-
gram to apply a method for distinguishing hard and easy questions, the method must
itself be “easy.”

AGP employed a heuristic method for distinguishing hard and easy questions of
law (Gardner, 1987, pp. 160–1). Figure 1.3 depicts Edwina Rissland’s algorithmic reca-
pitulation of AGP’s method for distinguishing hard and easy questions (Rissland,
1990).

For every predicate in a rule, themethod involves testing whether a commonsense
knowledge (CSK) rule provides an answer, or whether the problem matches positive
examples of the predicate, negative examples, or both. For instance, if no common-
sense rule provides an answer, but there is amatch to a positive instance, the question
is easy. If, however, a negative instance also matches, the question is hard.

Consider the requirement of there being a manifestation of willingness by the
prospective offeror to enter into a bargain. As operationalized for AGP, the offeror
must have performed a speech act that invites acceptance by a prospective offeree of
a proposal for an exchange.Whether there is such amanifestation does not, perhaps,
usually present a hard question of law, but it is litigated from time to time. In princi-
ple, AGP has a way to decide if it presents a hard question in a particular case. If there
is a commonsense rule-like definition of manifestation (or of an appropriate speech

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 23 — #23

Introducing AI & Law and Its Role in Future Legal Practice 23

act), and some instances of positive or negative examples of manifestations, AGP can
apply them to the facts of the problem, and follow the heuristic in Figure 1.3.

By the time AGP completes its analysis of all of the events in an offer and accep-
tance problem, it has prepared a detailed analysis tree, traversals of which effectively
provide a trace of its reasoning and an explanation of its answer. For instance, in
AGP’s analysis of event 1 above, it concludes that there is a pending offer, having
found in the buyer/offeror’s telegram a manifestation of an apparent and reasonably
certain readiness to be bound to an exchange (see Gardner, 1987, Fig. 7.1, p. 165).

…

AGP illustrates some issues that a program like Watson would need to address if
it were to be applied to tackle bar exam essay questions. Computationally modeling
legal reasoning about contracts problems requires some model of reasoning with
legal rules and concepts. It needs to distinguish between hard and easy questions
of law. It also needs an ability to explain its reasoning, and that reasoning has to be
intelligible to legal practitioners.

The Watson program that won the Jeopardy! game did not explain its answers. If
it did explain its answers, it would probably do so in terms of the syntactic features
and semantic clues in the text concerning concepts and relations that justified its
confidence in its answer (Ferrucci et al., 2010, p. 73). That kind of an explanation,
however, is not likely to correspond to what legal practitioners would expect.

Even if Watson could not perform the kind of reasoning AGP models, could it
recognize the features of prior legal explanations and arguments, such as those in
old exam blue books from past law school or bar review essay exams, and adapt them
to a new problem? Would it be able to recognize when these arguments are relevant
to users’ queries? What level of detail could it recognize in prior explanations and
arguments? Could it recognize not only the legal rules but also the application of the
legal rules to the facts of a problem? Could it recognize arguments that particular
rule antecedents are satisfied or not?

These are the kinds of questions discussed in detail in Part III of this book, but let
us begin to explore them here.

1.4.3. IBM’s Debater Program

CanWatson be trained to recognize and extract arguments from texts? It appears that
the answer is “yes”! In Spring 2014, an IBM executive demonstrated a new program
named “Debater,” a descendant of Watson that employs some of the text processing
technology of the Watson program to perform argument mining (see, e.g., Newman,
2014, demo at Dvorsky, 2014).

On any topic, the Debater’s task is to “detect relevant claims” and return its “top
predictions for pro claims and con claims.” In the example of Debater’s output, upon

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 24 — #24

24 Computational Models of Legal Reasoning

figure 1.4. Argument diagram of IBM Debater’s output for violent video games topic
(root node) (see Dvorsky, 2014)

inputting the topic, “The sale of violent video games to minors should be banned,”
Debater:

1. Scanned 4 million Wikipedia articles,
2. Returned the 10 most relevant articles,
3. Scanned the 3,000 sentences in those 10 articles,
4. Detected those sentences that contained “candidate claims,”
5. “[I]dentified borders of candidate claims,”
6. “[A]ssessed pro and con polarity of candidate claims,”
7. “Constructed a demo speech with top claim predictions,”
8. Was then “ready to deliver!” (Dvorsky, 2014)

While Debater’s output in the video was aural, one can present the text of its out-
put in visual terms. Figure 1.4 shows an argument diagram constructed manually
from the video recording of Debater’s aural output for the example topic (available
at Dvorsky, 2014). The box at the top (i.e., the “root node”) contains the topic proposi-
tion. Nodes linked to it with solid-lined arrows (i.e., “arcs”) support that proposition;
the dashed arcs attack it. The elapsed time from inputting a topic to outputting
an argument reportedly is from three to five minutes. In subsequent presentations,
Debater’s output has been demonstrated for other diverse topics.

Debater’s argument regarding banning violent video games in Figure 1.4 invites
comparison to a legal argument involving a similar topic shown in Figure 1.5. It
concerns the constitutionality of California (CA) Civil Code sections 1746–1746.5
(the “Act”), which restricted sale or rental of “violent video games” to minors.
The Court in Video Software Dealers Assoc. v. Schwarzenegger, 556 F. 3d 950

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C
01”

—
2017/5/27

—
10:57

—
page

25
—

#25

figure 1.5. Diagram representing realistic legal argument involving violent video games topic

25of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781316761380.001

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cam
bridge Core term

s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 26 — #26

26 Computational Models of Legal Reasoning

(9th Cir. 2009) addressed the issue of whether the Act was unconstitutional under
the 1st and 14th Amendments of the U.S. Constitution. As a presumptively invalid
content-based restriction on speech, the Court subjected the Act to the strict scrutiny
standard.

The Court held the Act unconstitutional because the State had not demonstrated
a compelling interest that “the sale of violent video games to minors should be
banned.” Figure 1.5 shows excerpts from the portion of the opinion in which the
Court justified this conclusion. The nodes contain propositions from that portion
and the arcs reflect the explicit or implied relations among those propositions based
on a fair reading of the text. As above, the solid arrows signify that the proposition
in the node at the base of the arrow supports the proposition in the node to which
the arrow points; dashed arrows signify an attack relation. Thus, nodes a, b, c, and
d contain propositions on which the State of CA relied to support its compelling
government interest. Nodes e, f, and g contain propositions the Court employs to
attack the State’s propositions.

The argument diagrams in Figures 1.4 and 1.5 address nearly the same topic and
share similar propositions, reflecting the fact that the Court’s argument addresses
some of the very same kinds of reasons and evidence as Debater’s argument.

The callout boxes in Figure 1.5, however, illustrate some key features of legal argu-
ment evidenced by the Court’s argument. In particular, (1) legal rules and concepts
govern the Court’s decision of the issue. (2) Standards of proof govern its assess-
ment of evidence. (3) The argument has an internal structure; support and attack
relations connect the various claims. (4) The Court explicitly cites authorities (e.g.,
cases, statutes). (5) Attribution information signals or affects the Court’s judgments
about belief in an argument (e.g., “the State relies”). (6) Candidate claims in a legal
document have different degrees of plausibility.

This is not to criticize Debater’s argument, which is not and does not purport to
be a legal argument.

On the other hand, given the intention of applying Watson and, presumably,
Debater to legal applications and argumentation, the comparison emphasizes the
importance of addressing these features of legal argument if and when Debater is
applied in a legal domain. It would be essential that Debater can identify the types
of concepts, relationships, and argument-related information enumerated above and
illustrated in Figure 1.5 in order for the system to be able to recognize and interpret
legal arguments. A program so endowed could improve legal information retrieval,
focusing users on cases involving concepts, concept relations, and arguments sim-
ilar to the one the human user is aiming to construct. It could also highlight and
summarize the relevant arguments for the user’s benefit (see Section 11.3).

Finally, if the system were to perform any automated reasoning based on the
retrieved texts in order to assist the user in solving his/her problem, such as by com-
paring arguments, predicting outcomes, or suggesting counterarguments, it would
need an ability to identify concepts, concept relations, and arguments in the texts.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 27 — #27

Introducing AI & Law and Its Role in Future Legal Practice 27

It is in this connection that the kinds of legal reasoning argument models and
argument schemes described in Part I will likely be essential. This is the focus of
Section 12.3.

1.4.4. Text Analytic Tools for Legal Question Answering

Watson’s fundamental task was to answer questions. In the context of the “Jeopardy!”
game that was enough to beat the reigning human champions.

Legal QA could be a great boon tomaking legal knowledgemore accessible. Imag-
ine the utility of a service that answers questions about landlord tenant law in a large
metropolitan area. Of course, lawyers know that legal QA can be quite complex. An
answer needs to be tailored to the questioner’s circumstances. It matters, for example,
if the apartment building is in Toronto, Canada, or Toronto, Kansas. Explanations
and arguments need to be provided. Assumptions need to be clarified on which the
answer is based and which often limit its applicability.

Many practical legal questions, however, do not require explanation and argu-
ment. At a November 2014 workshop in IBM’s Chicago offices, Paul Lippe of Legal
OnRamp (LOR) demonstrated an application with a large corpus of contracts involv-
ing two corporations engaged in a high volume of repeat transactions over time
(Legal OnRamp, 2015). Corporate legal staffs involved in contract monitoring and
maintenance would like to be able easily to answer such questions as: Which con-
tracts include certain terms or term language such as a disclaimer of liability for
consequential losses? For which contracts is a particular type of term embedded in
the body of the contract as opposed to in an appendix? Such queries may be quite
useful. For instance, certain terms may need to be updated frequently, and it may be
easier or cheaper to do so if the terms are located in a contract’s appendix. Finding
the contracts in a large corpus with such a term in the body can assist the legal staff
to target contracts that should be restructured.

Such queries cannot be easily and reliably answered with ordinary information
retrieval tools. Using Boolean searches and keywords, one cannot easily specify loca-
tions within a contract structure or deal with the wide variety of language with which
certain kinds of terms may be expressed. For instance, consider the variety of ways
in which a disclaimer of liability for consequential losses can be expressed.

In answering questions, Watson analyzes the question, searches for candidate
responses from a text corpus, and ranks the candidates according to its confidence
that each candidate addresses the question.

Question analysis means analyzing the question text for clues “to determine
what [the question] is asking about and the kind of thing it is asking for.” This
includes parsing the question text, which “produces a grammatical parse of a sen-
tence[,] identifies parts of speech and syntactic roles such as subject, predicate, and
object, [and identifies how some sentence segments relate to other] sentence seg-
ments.” This also includes decomposing suitable questions into “useful and relevant

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 28 — #28

28 Computational Models of Legal Reasoning

subparts.” The query analysis process does not result in one certain interpretation
of what the query means. The “parsing and question analysis result in multiple
interpretations of the question and . . . a variety of different queries” (Ferrucci, 2012,
pp. 6, 9).

Retrieval and ranking involves searching for candidate answers for each of the
query interpretations. “These queries are run against different sources to first gener-
ate a broad set of candidate answers.” This leads to generating multiple hypotheses
about what the query means and how to answer it. “Each candidate answer com-
bined with the question represents an independent hypothesis.” “Each [hypothesis]
becomes the root of an independent process that attempts to discover and evaluate
supporting evidence in its candidate answer” (Ferrucci, 2012, p. 6).

The system uses a set of evidence scoring programs to rank the candidate answers
by the likelihood that the answer addresses the question and to assess its level of
confidence in the answer’s correctness. “Each evidence–answer pair may be scored
by 100 independent scorers. Each scoring algorithm produces a confidence. For any
one candidate, there may be on the order of 10,000 confidence scores – on the order
of one million in total for a single question” (Ferrucci, 2012, p. 9).

Judging the likelihood that each candidate answer is correct is a matter of combin-
ing weights associated with the different evidence scores. Watson learns the weights
associated with the evidence scores “using a statistical machine learning framework”
(Ferrucci, 2012, p. 9).

Thus, in constructing a contracts QA facility, it is likely that the LOR team devel-
oped a set of concepts and relations for distinguishing among different types of
contractual terms or provisions and for identifying structural features of the contracts.
Such concepts probably included InContractBody, InAppendix,LiabilityDisclaimer,
ConsequentialDamages. The team probably manually annotated a subset of con-
tracts (a training set) for these features. The Watson system then learned statistically
to associate various syntactic and semantic information with these features and
applied them to annotate the remaining contract texts (the test set).

Figure 1.6 shows a high-level architecture for analyzing texts of legal documents
including contracts. Given a query, the program analyzes the question, translates
it into a set of structural and conceptual feature constraints on the type of answer
sought, identifies candidate documents responsive to the question, and then ranks
the candidates. In the contracts application, there may be only a few evidence
scorers, some more useful in answering structure-type questions, others better for
answering questions regarding provision type. The weighted utilities between evi-
dence scores and types of questions would not be hardwired but learned frompositive
and negative instances of question/answer pairs.

For semantic text analysis and conceptual information retrieval, two additional
tools, shown in dashed boxes in Figure 1.6, are helpful. Relation extraction and
concept expansion help to analyze questions and retrieve candidate answers from
a corpus.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 29 — #29

Introducing AI & Law and Its Role in Future Legal Practice 29

figure 1.6. Architecture of text analyzer for legal documents including contracts.
Dashed boxes show components for semantic analysis and conceptual information
retrieval

Relation extraction attempts “to find semantic relationships (e.g., [a person may
have] starred in, visited, painted, invented, [or have been] naturalized in) between
concepts, although they may have been expressed with different words or with
different grammatical structures” (Ferrucci, 2012, p. 7).

A system’s ability to identify a conceptual relationship, for instance, a particular
kind of party signing a particular kind of agreement, is essential for specifying the
constraint for purposes of conceptual information retrieval and prediction (see Sec-
tion 4.5.2). In the above contracts example, the concept of LiabilityDisclaimer may
be expressed in a variety of ways, for instance, “disclaims liability for incidental or
consequential damages,” “assumes no responsibility for any loss,” or “undertakes no
liability for any loss or damage suffered as a result of the misuse of the product,” all
of which the program must learn are instances of LiabilityDisclaimer.

Another example involves claims under a federal statute for injuries caused by
vaccines (see Section 10.5). One might seek to retrieve all cases involving assertions
that:

<specific-vaccine> <can cause> <generic-injury>

For instance, a court may have held that “DPT vaccine can cause acute
encephalopathy and death,” a case that would be a useful point of reference to an
attorney representing a decedent who had suffered a similar circumstance. A sys-
tem’s ability to identify a causal relationship between a specific vaccine and a type
of injury would be essential if the system is to preferentially rank such a case and
highlight its finding for the benefit of the user.

In a different legal context, one may wish to retrieve all trade secret misappropri-
ation cases where the:

<defendant> <signed> <nondisclosure-agreement>

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 30 — #30

30 Computational Models of Legal Reasoning

Some examples drawn from real trade secret cases include:

1. Newlin and Vafa had signed nondisclosure agreements prohibiting them from
using ICM software and tools upon leaving ICM.

2. Ungar signed a nondisclosure agreement.
3. Defendant Hirsch was employed by plaintiff, where he executed a nondisclosure

agreement (Ashley and Brüninghaus, 2009, p. 141).

Concept expansion identifies “concepts that are closely related to those given in
the question,” which may be key to “identifying hidden associations and implicit
relationships” (Chu-Carroll et al., 2012, p. 1).

For instance, in the above legal examples of conceptual legal information
retrieval, various concepts would need to be expanded:

<nondisclosure-agreement> includes: ‘nondisclosure agreement’, ‘agreement
not to disclose’, ‘employment contract with a nondisclosure clause’
<noncompete-agreement> includes: ‘noncompete agreement’, ‘noncompeti-

tion agreement’, ‘covenant not to compete’
<varicella-vaccine> includes: ‘varicella vaccine’, ‘Chickenpox vaccine’,

‘VARIVAX’

It is apparent in these examples of relation extraction that relevant concepts like
“vaccine,” “to sign,” or “nondisclosure agreement” can be expressed inmultiple ways.
Concept expansion identifies semantically related concepts in a corpus, in effect,
deriving a dictionary or thesaurus rather than starting with one.

1.4.5. Sources for Text Analytic Tools

Tools like those in Watson have become available commercially as web-based
services. As noted, IBM is attempting to capitalize on its investment in the Watson
system by making a selected set of Watson’s functionalities available for develop-
ers in a commercially convenient form. IBM offers a variety of services under the
IBM Watson Developer Cloud (also referred to as Watson Services and BlueMix)
for building cognitive apps (IBM Watson Developer Cloud Watson Services, 2015).
These are commercial services subject to license and to license fees. Versions are
also available for academic research, such as AlchemyLanguage, a set of text analy-
sis/natural language processing (NLP) tools (IBM Watson Developer Cloud Watson
Services, 2016).

Whether or not one wishes to avoid using IBM’s proprietary tools, the Watson ser-
vices are an instructive example for anyone interested in the future of legal practice.
Even absent an ability to directly access the services, the framing of the tools on the
website is instructive. It represents a creative effort by IBM to demonstrate how the
new text analytic technologies can be packaged in an accessible form. IBM’s efforts
provide at least one example of the kinds of IE services that are needed, how to
group them, and how to present them to noncomputer programmers (IBM Watson
Developer Cloud Watson Services, 2015).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 31 — #31

Introducing AI & Law and Its Role in Future Legal Practice 31

Presumably, IBM will not be the only source of such tools in the future.
Open-source alternatives are currently available in a rougher form that requires
developers to adapt them. As noted, IBM Watson is built on the UIMA platform,
an open-source Apache framework that has been deployed in several large-scale
government-sponsored and commercial text processing applications (Epstein et al.,
2012). Academic researchers in the UIMA community are developing alternative
open-source versions of tools like the above. For instance, Grabmair et al. (2015),
discussed in Sections 6.8, 10.5, 11.3, and 11.4, demonstrate the utility of open-source
tools for extracting argument-related information from legal texts (involving the cor-
pus of federal vaccine compensation cases mentioned above) and using it to improve
a full-text legal information system’s ranking of retrieved documents.

Those who wish to create legal applications based on either the Watson Devel-
oper Cloud services or UIMA tools still have to solve some challenging problems.
We illustrated a few of these problems above in contrasting Watson’s and Debater’s
outputs with what legal problem-solving demands. It is the goal of this book to
frame these problems so that students and other developers can tackle them with
the techniques and tools that the AI & Law field offers.

1.5. a guide to this book

It is intriguing to imagine how a QA text-analysis program could both answer legal
questions and provide explanations and arguments that a legal practitioner could
credit. Will there be a software service for:

Generation of explanations and arguments in law: assists in structuring explanations
of answers and supportive legal arguments?

That has not happened yet, however, and before it does, researchers will need to
answer two questions: How can text analytic tools and techniques extract the seman-
tic information necessary for AR and how can that information be applied to achieve
cognitive computing?

Readers will find answers to those questions in the three parts of this book.
Part I introduces more CMLRs developed in the AI & Law field. It illustrates

research programs that model various legal processes: reasoning with legal statutes
and with legal cases, predicting outcomes of legal disputes, integrating reasoning
with legal rules, cases, and underlying values, and making legal arguments. These
CMLRs did not deal directly with legal texts, but text analytics could change that in
the near future.

Part II examines recently developed techniques for extracting conceptual infor-
mation automatically from legal texts. It explains selected tools for processing some
aspects of the semantics or meanings of legal texts, including: representing legal
concepts in ontologies and type systems, helping legal information retrieval systems

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 32 — #32

32 Computational Models of Legal Reasoning

take meanings into account, applying ML to legal texts, and extracting semantic
information automatically from statutes and legal decisions.

Part III explores how the new text processing tools can connect the CMLRs, and
their techniques for representing legal knowledge, directly to legal texts and cre-
ate a new generation of legal applications. It presents means for achieving more
robust conceptual legal information retrieval that takes into account argument-
related information extracted from legal texts. These techniques will enable some
of the CMLRs of Part I to deal directly with legal digital document technologies
and to reason directly from legal texts in order to assist humans in predicting and
justifying legal outcomes.

Taken together, the three parts of this book are effectively a handbook on the
science of integrating the AI & Law domain’s top-down focus on representing and
using semantic legal knowledge and the bottom-up, data-driven and often domain-
agnostic evolution of computer technology and IT.

The recentness of the legal tech boom belies the fact that AI & Law researchers
have already invested a great deal of thought in how to model legal reasoning. This
book does not aim to provide a complete history of that research. Instead, it high-
lights selected trends in the development of CMLRs and CMLAs and explains their
implications for the future given the opportunities for integrating text analytics.

Nor does this book cover all of the ways in which legal tech start-ups are har-
nessing data to predict legal outcomes. Instead, the focus is on how to employ and
integrate semantic legal knowledge into predicting outcomes and explaining predic-
tions. Over years of pursuing a methodology that is both empirical and scientific, AI
& Law researchers have discovered what works in computationally modeling legal
reasoning and what does not. By carefully attending to these lessons, constraints,
and limitations, developers in the current legal tech boom interested in incorporat-
ing semantic legal knowledge may achieve AR and create a new kind of software
service, a cognitive computing legal app (CCLA).

The remainder of this section summarizes the book’s narrative in more detail and
serves as a chapter outline.

1.5.1. Part I: Computational Models of Legal Reasoning

The examples in Part I of rule-based and case-based programs that can perform intel-
ligent tasks such as legal reasoning and explanation, argumentation, and prediction,
all share something in common: giving reasons.

Reasoning means “the drawing of inferences or conclusions through the use of
reason.” Explanation is “the act or process of explaining,” that is, giving “the reason
for or cause of” or showing “the logical development or relationships of.” Argument
involves “a reason given in proof or rebuttal” or “discourse intended to persuade.”
Prediction means “an act of predicting”; to predict means “to declare or indicate in
advance; esp: foretell on the basis of observation, experience, or scientific reason”

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 33 — #33

Introducing AI & Law and Its Role in Future Legal Practice 33

(Merriam-Webster’s Collegiate Dictionary, 2015). In law, a reason in support of an
inference or conclusion usually involves asserting that a legal rule warrants the con-
clusion, citing an authoritative source for the rule, for example, a statute or an
applicable case, and explaining or arguing that the rule applies. (Circularity can
hardly be avoided in defining these fundamental inferential tasks!)

The models employ knowledge structures for representing information in the
statutory or court-made rules or in the facts of the cases and schemes of inference
and argument to process reasons. Heretofore, the knowledge representation struc-
tures had to be filled inmanually, the source of the previously mentioned knowledge
acquisition bottleneck.

Much work, discussed in Chapter 2, has addressed constructing formal logical
models of statutory reasoning, a kind of model that probably is not yet ready to
automatically connect directly to legal texts. The chapter contrasts logical models
of reasoning with statutory rules and realistic statutory interpretation. It considers
some computational approaches to assisting humans to find and interpret statutory
rules that are alternatives to logical models and that may be able to connect with
legal texts.

Models of case-based legal reasoning, discussed in Chapter 3, address analogical
reasoning with legal cases or precedents, an important phenomenon in common law
jurisdictions that is more likely to result in successful applications of text analytics.
The chapter compares a number of case-based models in terms of: how the CMLR
represents legal information in cases, the aspects of legal reasoning with cases and
precedents the CMLR captures or misses, the extent to which the CMLR integrates
rules, cases, and underlying values, and the compatibility of the CMLR’s represen-
tational techniques with the new techniques for extracting information from texts.

Some computational models for predicting legal outcomes, described in Chap-
ter 4, are also ripe for applying text analytics. The chapter surveys case-based andML
techniques for predicting outcomes of legal cases and assesses their compatibility
with text analytics.

The culmination of all of this work in AI & Law has been the development of
computational models of legal argument and legal argument schemes, described
in Chapter 5, completing Part I. The chapter focuses on CMLAs that unify reason-
ing logically with legal rules and analogically with legal precedents. The models
generate legal arguments, sometimes represented diagrammatically, for purposes of
planning written arguments, instruction, or public discussion of legal issues. Some
aspects of these models are also ready for applying text analytics.

1.5.2. Part II: Legal Text Analytics

Meanwhile, other fields of research and development, such as information retrieval,
QA, IE, and argument mining, have been perfecting techniques for representing

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 34 — #34

34 Computational Models of Legal Reasoning

legal concepts and relations. Programs can then process the concepts and rela-
tions semantically and computational models of legal reasoning can use them
intelligently. As explained in Chapter 6, this includes the development of legal
ontologies and, more recently in UIMA type systems of the sort employed in Wat-
son and Debater, and in LUIMA, an extended type system for legal domains. This
part addresses how to adapt these text analytic tools to achieve conceptual legal
information retrieval.

Some of the new text analytic techniques are already being integrated with com-
mercial legal information retrieval (CLIR) tools. Chapter 7 introduces current
technology for legal IR, explains these initial applications, and offers some new ones.
Chapter 8 addresses how to apply ML to textual data in the contexts of e-discovery
(litigation-related discovery of evidence from electronic information including texts)
and legal information retrieval.

The text analytic techniques are extracting functional information from statutes
and regulations and argument-related information from legal cases. As explained in
Chapters 9 and 10, the techniques include rule-based extraction guided by LUIMA
types and ML adapted to corpora of legal decisions.

The statutory conceptual information of interest includes not only the topics and
types of statutes (e.g., regulatory domain and whether a provision is a definition
or prescription) but also functional information such as the agents that a statute
directs to communicate with each other. Conceptual information in cases includes
argument-related information such as whether a sentence states a legal rule for decid-
ing an issue, whether it is an evidentiary statement of fact about the case, or whether
it indicates an application of the rule or elements of the rule to the facts of a case.

1.5.3. Part III: Connecting Computational Reasoning Models and Legal Texts

By integrating the models and tools of Parts I and II, programs can use the con-
ceptual information extracted directly from legal texts to perform legal reasoning,
explanation, argumentation, and prediction. Basically, the goal is for text analyt-
ics automatically to fill in the computational models’ knowledge representation
structures. In this way, the Watson services and UIMA tools can reduce the knowl-
edge acquisition bottleneck, accomplish conceptual legal information retrieval, and
address the challenges mentioned above of legal QA including the need to explain
its answers. Part III explains how to make these connections and achieve CCLAs.

Chapter 11 addresses how to integrate the QA, IE, and argument mining tech-
niques with certain CMLRs to yield new tools for conceptual legal information
retrieval, including AR. Fortunately, these tools do not depend on processing all
of a repository’s documents. In designing a proposed legal app, it is not necessary
that a corpus be available wholesale for text processing to identify concepts, concept
roles and relations, and other argument-related information. Instead, the new text
processing techniques can be applied as a kind of filter between a full-text retrieval

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 35 — #35

Introducing AI & Law and Its Role in Future Legal Practice 35

system and human users. The filter is applied just to the documents retrieved as
relevant through traditional full-text retrieval searches, promoting the documents
that should be ranked higher in terms of the extent to which concepts, conceptual
relationships, and other argument-related information match the user’s need. Chap-
ter 11 demonstrates this filtering approach; argument-related information extracted
from legal texts improves a full-text legal information system’s ranking of retrieved
documents.

As explained in Chapter 12, these tools, in turn, can be integrated even more
fully with some of Part I’s computational models of legal reasoning and argument
to create a new breed of legal apps in which computer and human user collaborate,
each performing the intelligent tasks it performs best. In a complementary way, the
computational models of reasoning, explanation, argument, and prediction will play
significant roles in customizing commoditized legal services. They provide examples
of the processes and tasks that may be adapted for the new apps and the concepts,
roles, and relations that should be implemented. The new legal practice tools, based
on information extracted with UIMA or other text analytic technology, can reason
with legal texts, enabling practice systems to tailor their outputs to a human user’s
particular problem. In effect, they are the means by which a commoditized legal
service, in Susskind’s terms, can be customized.

Chapter 12 presents the idea that legal information queries and QA should be
thought of as means for testing hypotheses about the law and how it applies. It intro-
duces the possibility that a legal app could engage users in collaboratively posing,
testing, and revising hypotheses about how an issue should be decided. Section 12.7
illustrates some practical use cases and the different kinds of legal hypotheses they
involve. Readers interested in a high-level view of how legal apps could address these
use cases might begin with the last chapter and then circle back to the beginning of
this book.

The new apps will be subject to some limitations.While current text analytic tech-
niques can extract much conceptual information, they cannot extract it all. Many
conceptual inferences are simply too indirect and require too much background
CSK to identify. Thus, it is an important empirical question how much can be
accomplished with current text analytic techniques. Before concluding, Chapter 12
explores these remaining challenges.

1.6. implications of text analytics for students

Legal instructors, law schools, and authors have been urging legal educators to focus
more on the developing technologies of legal practice. For example,

• Granat and Lauritsen (2014) identified 10 law school programs that focus stu-
dents on the technology of law practice. These programs cover such topics as
practice systems automating data gathering, decision-making, and document

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 36 — #36

36 Computational Models of Legal Reasoning

drafting, developing legal expert systems for public interest legal services and
legal clinics, redesigning legal processes, applying ML to legal data and legal
informatics.

• Georgetown University Law Center sponsors the Iron Tech Lawyer Compe-
tition. Law students are building legal expert systems and entering them in
competition (Iron Tech Lawyer, 2015). Additional information about some of
these activities may be found in Staudt and Lauritsen (2013).

• Two far-sighted authors, Lippe and Katz (2014), have urged the legal field to
reckon specifically with the impact of Watson technology on the future of legal
practice.

This book is intended to help law students, computer science graduate students,
legal practitioners, and technologists to take up that challenge and to design and
implement legal applications of a kind that has not previously been technically
possible. As argued, the combination of new text analytic tools and computational
models of legal reasoning provides an opportunity for those who see potential in
implementing processes of legal practice computationally.

Law students and practitioners may not have computer programming expertise,
but they will not necessarily need it. What they will need is an ability to think about
legal practice in terms of engineering a cognitive computing process.

This book assumes readers do not have familiarity with computer programming.
The focus is not on computer code but, more generally, on systematic descriptions of
legal and computational processes. For instance, in each of the examples of CMLRs
of Part I, we examine: the legal process, the program models, and the assumptions
made, the inputs to and outputs from the program and how they are represented,
the computational processes (at a high level of description such as via architecture
diagrams, flow charts, and algorithms) with which the program transforms inputs
to outputs, concrete examples of the algorithmic steps transforming specific inputs
to specific outputs, how the researchers evaluated the programs, the strengths and
weaknesses of the approach, and its relevance given recent developments in legal
text processing.

Actually writing computer code is the last step in designing successful computer
applications. Key steps inevitably precede coding. They involve specifying require-
ments for the ultimate program and designing a high-level software architecture to
realize it. Only then do programmers attempt to implement the software. Recent
models of software development may focus on a modularized process involving
multiple, nested instances of these steps, but even then, specifying requirements
and a high-level design of a module always precedes the coding to implement it
(Gordon, 2014).

The pedagogical goal, therefore, is not to teach the reader computer programming
but how to propose and design apps that assist users in performing legal processes.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C01” — 2017/5/27 — 10:57 — page 37 — #37

Introducing AI & Law and Its Role in Future Legal Practice 37

If the high-level designs are sound, there will always be computer programmers to
implement them.

Law students are ideally suited to engage in identifying legal processes to model,
specifying requirements, and designing high-level architectures. Law students are
continually introduced to legal processes that are new to them and instructed
how to perform the processes step-by-step. This occurs repeatedly in the first-year
curriculum, in moot court competitions, in legal clinics, in legal internships and
part-time jobs with law firms, corporate legal departments, and university tech trans-
fer departments, and in pro bono activities. Today, law students are also likely to
have used computer apps from a tender age. They are intimately familiar with the
new modes of communication, with the current interface conventions, and with
accessing web-based resources.

Along the way, the descriptions of computational models expose readers to a
variety of assumptions and uncertainties inherent in legal reasoning that affect
human legal reasoning. Indeed, law students study the sources of these uncertainties
throughout the law school curriculum. These assumptions and uncertainties present
some design constraints that AI & Law researchers have learned to avoid, finesse, or
accommodate in their CMLRs, and that will necessarily affect efforts to apply text
processing tools like those in Watson and Debater. Students will also learn how,
and the extent to which, the performance of these technologies can be measured
experimentally, and what the measures signify.

With respect to developing cognitive computing tools for legal practice, it is a time
of exploration, even for IBM. The Watson Developer Cloud is indicative of a trend
to make text analytic tools convenient to use even without computer programming
expertise. A well-formed proposal from a law school student, legal academic, or prac-
ticing attorney might well engage IBM’s material interest. This is not as far-fetched
as it may appear. Indeed, it has happened already. Law students at the University of
Toronto (that’s inCanada,Watson, in case you are reading this) have already engaged
in building legal apps in collaboration with IBM using Watson services (Gray, 2014).
They created the Silicon Valley start-up called Ross, discussed in Chapter 12. As an
extra incentive, IBM has announced a “$5 million competition . . . to develop and
demonstrate how humans can collaborate with powerful cognitive technologies to
tackle some of the world’s grand challenges” (Desatnik, 2016).

Why couldn’t a law student win with a CCLA for cross-jurisdictional issues in
cybercrime and security? Tutoring students’ imaginations about what is possible may
be all that is necessary to enable them to design and propose such an app. This book
aims for that.

Cognitive computing in law will be happening soon!

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.001
Downloaded from https://www.cambridge.org/core. University of Florida, on 08 Aug 2017 at 10:11:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.001
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 38 — #1

2

Modeling Statutory Reasoning

2.1. introduction

The Law is a domain of rules, and many of those legal rules are embodied in
statutes and regulations. Since rules can be expressed logically and computers can
reason deductively, computationally modeling statutory reasoning should be easy.
One simply inputs a fact situation to the computer program; the program identifies
the relevant rules, determines whether or not the rules’ conditions are satisfied, and
explains the answer in terms of the rules that applied or did not apply.

Building a computational model of statutory reasoning, however, presents chal-
lenges. As explained below, statutes routinely are vague, syntactically ambiguous as
well as semantically ambiguous, and subject to structural indeterminacy. If a com-
puter program is to apply a statutory rule, which logical interpretation should it
apply, how can it deal with the vagueness and open-texture of the statute’s terms,
or determine if there is an exception?

The chapter draws a contrast between deductively applying a statute and the
complex process of statutory interpretation, which frequently involves conflicting
reasonable arguments. Classical logical models may break down in dealing with
legal indeterminacy, a common feature of legal reasoning: even when advocates
agree on the facts in issue and the rules for deciding a matter, they can still make
legally reasonable arguments for and against a proposition.

Reasoning with statutes, however, remains a pressing necessity. The chapter exam-
ines various AI&Law approaches that address or finesse these issues: a normalization
process for systematically elaborating a statute’s multiple logical versions, a logical
implementation for applying a statute deductively, and more recent models of busi-
ness process compliance and network-based statutory modeling, both potentially
useful for cognitive computing.

Questions addressed in this chapter include: How can statutory rules be
ambiguous, both semantically and syntactically? How do lawyers deal with these

38
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 39 — #2

Modeling Statutory Reasoning 39

ambiguities, and how can computer programs cope? What are normalized legal
drafting, Prolog, and a Prolog program? What is depth-first search and how does it
differ from breadth-first search? What is legal indeterminacy and why is it a problem
for logical models of legal reasoning? How can logic programs assess business process
compliance with regulations? What problems do isomorphic knowledge representa-
tions of statutes address? What are citation networks and statutory network diagrams,
and how can they support cognitive computing?

2.2. complexities of modeling statutory reasoning

Statutes and regulations are complex legal texts. An often intricatemaze of provisions
written in legal technical jargon define what is legal and not. With their networks of
cross-references and exceptions, statutes and regulations are often too complicated
for the untutored citizen to understand. Even legal expertsmay have difficulty simply
identifying all and only the provisions that are relevant to analyzing a given question,
problem, or topic.

The field of AI & Law has long studied how to design computer programs that can
reason logically with legal rules from statutes and regulations. It has made strides,
and demonstrated some successes, but it has also developed an appreciation of just
how difficult the problem is. In the process, the field has identified a number of
constraints that need to be addressed or finessed in attempting to design a computer
program that can apply statutory rules. As noted, these constraints include vagueness
and two kinds of ambiguity in statutory rules, the complexity of statutory interpre-
tation, the need to support conflicting but reasonable arguments about what a legal
rulemeans, and practical problems inmaintaining logical representations of statutes
alongside textual ones.

Of the two kinds of ambiguity that complicate computationallymodeling statutory
reasoning, semantic ambiguity, and its cousin, vagueness, are familiar. The regula-
tory concepts and terms the legislature selects may not be sufficiently well defined
to determine if or how they apply. The second kind, syntactic ambiguity, may be
less familiar: the logical terms legislatures use, such as “if,” “and,” “or,” and “unless,”
introduce multiple interpretations of even simple statutes.

2.2.1. Semantic Ambiguity and Vagueness

Semantic ambiguity “is uncertainty between relatively few . . . distinct alternatives”
concerning a term’s meaning (Allen and Engholm, 1978, p. 383). “Vagueness is a
semantic uncertainty about precisely where the boundary is with respect to what a
term does and does not refer to” (Allen and Engholm, 1978, p. 382).

Both are due to the fact that legislatures may employ terms that are vague or oth-
erwise not well-defined. Waterman confronted the problem that ill-defined legal
terms present for constructing legal expert system rules (Section 1.3.1), and Gardner

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 40 — #3

40 Computational Models of Legal Reasoning

attempted to address it with her algorithm for distinguishing hard and easy legal
questions (Section 1.4.2).

Semantic ambiguity and vagueness are concessions to human, social, and politi-
cal reality. The legislature cannot fashion language sufficiently detailed to anticipate
all of the situations it may wish to regulate. Instead, it employs more general termi-
nology in statutory rules and relies on the courts to interpret and apply the abstract
terms and concepts in new fact situations. Intentionally rendering key provisions in
a semantically ambiguous way can also facilitate legislative compromise. If the legis-
lature attempted to use specific, detailed language, it might compound the difficulty
of obtaining political consensus (Allen and Engholm, 1978, p. 384).

Semantic ambiguity and vagueness, however, are also a source of legal indeter-
minacy: opponents can agree on what legal rule applies and what the facts are
and still generate reasonable legal arguments for opposing results (Berman and
Hafner, 1988).

Even when the legislative intent is clear and the statute’s language straightfor-
ward, legal adversaries routinely make reasonable but conflicting arguments about
what the rule’s terms mean. In their example, the case of Johnson v. Southern Pacific
Co.,117 Fed. 462 (8th Cir. 1902) rev’d 196 U.S. 1 (1904), a federal statute made it
“illegal for railroads to use in interstate traffic ‘any car not equipped with couplers
coupling automatically by impact.’ ” According to the statute’s preamble, the act’s
purpose was “to promote the safety of employees . . . by compelling carriers . . . to
equip their cars with automatic couplers . . . and their locomotives with drive wheel
brakes” (Berman and Hafner, 1988, p. 196).

There was no disagreement about the facts. “The plaintiff, a railroad brakeman,
was injured when he attempted to couple a locomotive to a dining car, in order to
move the dining car off the track.” Causation was not an issue: the plaintiff’s injury
was caused by the fact that although the locomotive was equipped with such a cou-
pler, it was not one that could couple automatically with this particular dining car.

Nevertheless, courts disagreed about whether the statutory rule’s conditions were
satisfied, and, in particular “on the meaning of all three of the predicates in the
condition part of this rule: the meaning of ‘car,’ the meaning of ‘used-in-interstate-
commerce,’ and the meaning of ‘equipped’ ” (Berman and Hafner, 1988, p. 198).
Are locomotives included in the “cars” required to have automatic couplers or not?
Does “interstate commerce” include the time when a car is awaiting its next load or
not?Were the dining car and locomotive “equipped” with automatic couplers or not?
The trial and appellate courts disagreed on the answers to these questions and they
certainly did not treat those answers as determined by the terms’ literal meanings.

2.2.2. Syntactic Ambiguity

The other kind of ambiguity, syntactic ambiguity, arises from a different reality: statu-
tory language does not always follow a single, coherent logical structure. This results

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 41 — #4

Modeling Statutory Reasoning 41

in part from the properties of natural language text. Unlike mathematical and logi-
cal formalisms and computer code, text does not allow one explicitly to specify the
scopes of the logical connectors, such as “if,” “and,” “or,” and “unless.” The syntax of
a statute can also be unclear due to the language used in implementing exceptions
and cross-references. Exceptions to a provision may be expressed explicitly but even
implicitly and may appear not only within a provision but also in other provisions or
even in other statutes (Allen and Engholm, 1978).

Layman Allen demonstrated that syntactic ambiguity leads to multiple possible
logical interpretations of even relatively simple statutory provisions, with potentially
profound consequences for those subject to regulation. He provided an example
from a Louisiana statute defining a crime:

No person shall engage in or institute a local telephone call, conversation or con-
ference of an anonymous nature and therein use obscene, profane, vulgar, lewd,
lascivious or indecent language, suggestions or proposals of an obscene nature and
threats of any kind whatsoever. (Allen and Engholm, 1978)

Presumably, the legislature intentionally selected vague terms like “obscene” and
“indecent” with full knowledge of their open texture.

It is much less likely that they intentionally promulgated a criminal standard
with an inherent syntactic ambiguity: To be in violation of the statute, is it suffi-
cient that a call include either obscene language OR threats, or, as the defendant
in State v. Hill, 245 La 119 (1963) argued successfully at the District court, must it
include obscene language AND threats? The Louisiana Supreme Court disagreed;
it interpreted “and” as meaning “or,” seemingly violating a common law maxim that
criminal statutes should be strictly construed. Surely, it would have been better leg-
islative policy to issue a syntactically unambiguous standard (Allen and Engholm,
1978).

Allen described a systematic normalization process for identifying such ambigui-
ties. Given a statute, one:

1. Identifies the statute’s “atomic” substantive propositions and replaces them
with labels (S1, S2, . . .).

2. Uses propositional logic to clarify the syntax of the statute.
3. Restores the text of the substantive propositions.

In propositional logic, symbols stand for whole propositions. Using logical opera-
tors and connectives, propositions can be assembled into complex statements whose
truth values depend solely on whether the component propositions are true or false.
Unlike, predicate logic, defined below, propositional logic does not consider the
components or structure of individual propositions (see Clement, 2016).

Applying the normalization process to the Louisiana statute yields a number of
versions including the two shown in Figure 2.1. Each version is an expression in
propositional logic, which renders its logical structure more clearly.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 42 — #5

42 Computational Models of Legal Reasoning

figure 2.1. Normalized versions of two alternative interpretations of the Louisiana
statute and corresponding Prolog rules (bottom) (Allen and Engholm, 1978)

2.3. applying statutory legal rules deductively

A normalized statute in propositional logical form offers several advantages.
First, using propositional logic to clarify the syntax of the statute can make a com-

plex statute much easier to understand. For instance, Allen contrasts a complex
provision of the Internal Revenue Code (IRC section 354), which deals with the
tax treatment of exchanges of securities in certain corporate reorganizations, with
a normalized version as shown in Figure 2.2 on the right. The normalized version
identifies the “atomic” substantive propositions and employs indentation to convey
the simplified logical structure.

Allen also provided a kind of flow chart through the logic of the “propositional-
ized” version of the statute where every node in the graph is one of the requirements
of the statute (see Figure 2.3). The labeled nodes, S1 through S9, refer to the labeled
propositions in the normalized version (right) in Figure 2.2.

The flow chart can be much easier to understand than the textual or even nor-
malized versions of the statute. It demonstrates three alternative paths through the
statute from a starting point of an exchange of securities in the corporate reorganiza-
tion (S2) to the desired conclusion of “no gain or loss” recognition (S1). These paths
remain more or less implicit in the textual and normalized versions (although Allen
combined the flow chart and the normalized version to make the paths explicit).

In the context of corporate compliance, for instance, such flow charts can help
to clarify obligations of the various corporate constituents. Corporate compliance
involves detecting and preventing violations of law by the agents, employees, officers

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 43 — #6

Modeling Statutory Reasoning 43

figure 2.2. IRC section 354 and a normalized version (right) (see Allen and Engholm,
1978)

and directors of a corporation, firm, or other business. Presenting an employee’s reg-
ulatory obligations in the form of a flow chart could help the employee understand
what is legal and what is not legal.

2.3.1. Running a Normalized Version on a Computer

Second, a statutory provision in propositional logic can be run on a computer! At
the bottom of Figure 2.1 are the two normalized versions of the Louisiana statute

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 44 — #7

44 Computational Models of Legal Reasoning

figure 2.3. Flow chart for propositionalized IRC section 354 (see Allen and Engholm,
1978)

expressed in Prolog, a programming language based on so-called “Horn clause logic”
associated with artificial intelligence and computational linguistics.

The normalized versions of this statute are examples of simple propositional logic.
The version on the right, S4 :- S1, S2, S3, means “If S1 ∧ S2 ∧ S3⇒S4,” where ∧
means “and.” The version on the left uses two formulas, S4 :- S1, S2 and S4 :- S1, S3
to implement the disjunction (i.e., the “or”) in the version.

Prolog interprets the Horn clauses, treating them as a program. For example, it
treats the horn clause on the right as saying, in effect, “To show S4, show S1, show
S2, and show S3.”

By asking the user whether each substantive proposition S1, S2, and S3 is true or
false, a computer can prove the truth or falsity of S4. In this way, the logic of the
statute is automated. The logic of these normalized versions of the statute is simple
enough to handle manually with truth tables. Nevertheless, a computer can also
process the propositional logic of more complex statutes like that in Figure 2.2.

2.3.2. Predicate Logic

One would also like to express the content of a statutory provision’s substantive
propositions, not just its overall logical syntax. This can be done with classical logic
(also known as predicate logic, predicate calculus, or first-order logic).

Classical logic is the formal logic known to introductory logic students as “predicate
logic” in which, among other things, (i) all sentences of the formal language have
exactly one of two possible truth values (TRUE, FALSE), (ii) the rules of inference
allow one to deduce any sentence from an inconsistent set of assumptions, (iii)
all predicates are totally defined on the range of the variables, and (iv) the formal
semantics is the one invented by Tarski that provided the first precise definition of
truth for a formal language in its metalanguage. (Dowden, 2016)

Classical logic employs symbols for predicates, subjects, and quantifiers. In propo-
sitional logic, the proposition ‘All men are mortal’ is represented with just one
symbol and has no internal structure. In contrast, in classical logic one can define
a predicate M(x) to express that x is mortal or employ the universal quantifier (“For
all”): All x. M(x) to express that all x are mortal.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 45 — #8

Modeling Statutory Reasoning 45

Horn clause logic, the basis of Prolog, implements most (but not all) of predicate
logic and allows one to express both the content of substantive propositions of a
normalized version of a statutory provision as well as its logical syntax. For instance,
HLA Hart’s famous sample statutory provision, “Vehicles are not permitted in the
park,”1 could be expressed in Prolog (that is, Horn clause predicate logic) as:

violation(X, S) :- vehicle(X), park(S), in(X, S).

That is, “If X is vehicle ∧ S is park ∧ X in S⇒X in S is violation.” In Prolog, commas
between predicates indicate “and”; the universal quantifier is implied.

If one inputs to the Prolog program information such as:

vehicle (X) :- motorcycle (X)
vehicle (X) :- automobile (X)

the program can prove that one may not take into the park a motorcycle, an auto-
mobile, or indeed, anything else we input as qualifying as a vehicle, by chaining the
conclusion of one rule to the premise of the other.

2.3.3. Syntactic Ambiguity as Design Constraint

Before turning to an example of a large-scale legal logic program, let’s summarize
the implications of syntactic ambiguity.

Syntactic ambiguity makes the task of translating statutory texts into computa-
tionally formalized logical rules problematic (Allen and Saxon, 1987). In computa-
tionally expressed rules, syntactic ambiguity can be eliminated. The problem is that
the version of a statutory rule selected for formalization into a logic programming
language like Prolog is not necessarily the one that the legislature intended.

As a result of syntactic ambiguity, a knowledge engineer cannot be certain what
the legislature intended. The number of syntactically possible interpretations that
result from applying the normalization process to even fairly simple statutory provi-
sions can be disconcertingly large. Section 3505, a proposed limitation of the fourth
amendment exclusionary rule, stated:

Except as specifically provided by statute, evidence which is obtained as a result
of a search or seizure and which is otherwise admissible shall not be excluded in a
proceeding in a court of the United States if the search or seizure was undertaken in
a reasonable, good faith belief that it was in conformity with the fourth amendment
to the Constitution of the United States. A showing that evidence was obtained pur-
suant to and within the scope of a warrant constitutes prima facie evidence of such
a reasonable good faith belief, unless the warrant was obtained through intentional
and material misrepresentation.

1 Actually, Hart’s example was “A legal rule forbids you to take a vehicle into the public park” (Hart,
1958, p. 607).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 46 — #9

46 Computational Models of Legal Reasoning

Although just two sentences long, when normalized, section 3505 yielded 48 inter-
pretations of varying strength, as measured by their restrictiveness or inclusiveness,
based simply on the syntactic ambiguities in the provision (Allen and Saxon, 1987).

As a practical matter, only a few versions may seem clearly reasonable and other
versions may be clearly unreasonable. The question is who selects? If a knowledge
engineer decides which normalized version to implement, it is not an authoritative
choice. Legal academics or other experts in a fieldmay express opinions about which
version the legislature intended or should have intended. The only body able tomake
the selection authoritatively, however, is the legislature.

Unfortunately, the legislators were probably unaware of the ambiguity (Allen and
Saxon, 1987). While semantic ambiguity can facilitate legislative compromise and is
usually intended, syntactic ambiguity serves no legitimate function in the political
process and does not facilitate political comprise. Indeed, in laying out a systematic
procedure for generating normalized versions of statutory provisions, one of Layman
Allen’s goals was to sensitize legislators and law students to the phenomenon (Allen
and Engholm, 1978; Allen and Saxon, 1987).

A law professor in Tennessee, GrayfredGray, achieved some success in convincing
a state legislative drafting committee to adopt normalization as a means of eliminat-
ing unintended syntactic ambiguity in provisions of the State’s mental health law
provisions concerning commitment and discharge of mental patients. The Com-
mittee was concerned “that the law be clear to the people who would have to work
with it, most of whom were not lawyers” (Gray, 1985, pp. 479–80). The legislature
did not seem to have a problem with normalization. The publisher of the state’s
statutory code, on the other hand, worried that normalization’s liberal use of inden-
tation to convey statutes’ simplified logical structure would take up too much space,
increasing the cost of the printed publications. Ultimately, only a few statutes were
published in normalized form.

Today, on the World Wide Web, space is not an issue. Normalized versions of
statutes and accompanying flowcharts could be published economically via the web,
making it much easier for nonlawyers to read and understand the legal require-
ments. In a web-based publication, help links and dropdown menus could assist the
uninitiated in using and interpreting the normalized provisions.

In the meantime, of course, the multiplicity of logical interpretations of statutes
has not brought the legal profession to its knees. On the contrary, it generates employ-
ment. Attorneys and legal experts representing taxpayers or insurance companies are
retained to generate and exploit alternative syntactic interpretations of complex pro-
visions. In an adversarial context, identifying alternative logical interpretations of a
statute or of a complex insurance policy provision opens the opportunity for argu-
ing for an interpretation favorable to one’s client, as in the criminal trial in State v.
Hill above.

In a different context, such as corporate compliance, risk-averse attorneys might
recommend adopting a more expansive logical interpretation of a statute to

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 47 — #10

Modeling Statutory Reasoning 47

formalize in a business rules system. Selecting a safely expansive interpretation
would help to reduce subsequent infractions of the legal rules.

From the viewpoint of cognitive computing, a system that could detect latent
syntactic ambiguities would be a nice tool for legislative drafters. Given the input
of a statutory provision in natural language, could a system automatically generate
a comprehensive listing of normalized versions or partially order them in terms of
their strength? In other words, can the normalization process of (Allen andEngholm,
1978) be automated? I am not aware of any research attempts to do so, but it seems
worth exploring.

2.3.4. The BNA Program

Marek Sergot and his colleagues successfully implemented a large portion of the
British Nationality Act (BNA) as a logic program written in Prolog (Sergot et al.,
1986). The system ran approximately 150 rules dealing with the acquisition of British
citizenship. The rules were implemented as Horn clauses in Prolog; Figure 2.4 shows
a translation of three of the rules into pseudo English.

Inputs to the BNA program were descriptions of problems involving a question of
citizenship. The program output an answer and an explanation. Asking a question
was equivalent to stating a proposition and asking Prolog to prove it. For instance,
one such proposition is:

A: Peter is a British citizen on date (16 Jan 1984) by sect. z.

Here, z is a variable standing for the number of some section of the statute that would
warrant the conclusion.

figure 2.4. BNA provisions as represented in rules (Sergot et al., 1986)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 48 — #11

48 Computational Models of Legal Reasoning

Prolog is both a programming language and theorem prover. Given A, Prolog
attempts to construct a proof that A by reasoning backward from conclusion A to
identify conditions that need to be satisfied. (Backward chaining was introduced in
Section 1.3.1.) In the process, it finds all of the rules that conclude with a proposition
of the form A. There may be a number of different rules with which to establish
conclusion A. Prolog will try them all in the order in which the rules are written.

Let’s say there is a list of n rules whose conclusions are A. If Prolog is considering
a rule ri from that list, let’s call the next rule in the list ri+1. Finally, when Prolog
is considering rule rj, if it finds a new rule whose conclusion is the antecedent of
rule rj, let’s refer to the newly found rule as rj1 and call it a “descendant” of rule rj on
a path to proving A.

Prolog will try the n rules on the list in a depth-first search order. In depth-first
search, the program follows a path from one of the ri on the list to its end, either
success or failure, before starting a new path from ri+1. In other words, if Prolog
is considering rule ri, the program always chooses to try to find a descendant ri1 of
rule ri, before moving on to the next rule on the list, ri+1. If and only if the path
from ri runs out without proving A will it move on to ri+1.

In contrast, in a breadth-first search, the program tries to open a path for each of
the n rules before searching for any descendants of a descendant. That is, even if a
search-based program has found a descendant for rule ri (i.e., ri1) it chooses to try to
find a descendant for each of the next rules on the list ri+1, ri+2, . . ., rn, before trying
to find a descendant of ri1 .

Each rule will have conditions B1 . . . Bn that need to be satisfied in order to con-
clude C. Remember that Prolog treats such a rule as a program: To show C, show B1,
show B2, . . ., and show Bn. For each of these Bn subproblems, Prolog solves it in one
of four ways:

1. There may be another rule whose conclusion is of the form of Bn.
2. There may be a fact satisfying Bn.
3. The system can ask the user if Bn is true.
4. The system can ask an expert if Bn is true.

Figure 2.5 shows excerpts of the BNA program’s output for the question regarding
proposition A. The boldface indicates inputs from the user. Notice that the program
could answer “why” and “how” questions and explain its answers. Basically, hav-
ing constructed a proof of A or of an intermediate conclusion, it could fashion an
explanation by reiterating the inference steps in its proof.

2.3.5. Some Problems of Translating Statutes into Programs

In designing and implementing the computational model of the BNA, the designers
encountered four problems or constraints: Sometimes a previously formulated rule

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 49 — #12

Modeling Statutory Reasoning 49

figure 2.5. BNA program output (excerpts) (Sergot et al., 1986, p. 376f)

or predicate needed to be reformulated. In addition, the statute’s use of negation,
default reasoning, counterfactual conditions, and open-textured terms needed to be
addressed.

Reformulation
Formalizing an extensive statute is a process of trial and error. One frequently
encounters a new context in which a previous formulation of a rule concept is inad-
equate and has to be reformulated to accommodate additional constraints imposed
by subsequent rules in the act. For instance, the researchers discovered that it is
“insufficient to conclude only that an individual is a British citizen; it is also nec-
essary to determine the section under which citizenship is acquired.” Also, a newly

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 50 — #13

50 Computational Models of Legal Reasoning

encountered section made evident the need for “a more explicit treatment of time”
to compute constraints that enabled one not a citizen subsequently to be registered
as one under certain circumstances (Sergot et al., 1986, p. 374). The researchers had
to change some existing rules, conditions, or parameters or add new ones to address
the new constraints.

Negation
To implement some rules in the BNA and other statutes, it would be desirable to
employ rules that state a negative conclusion (i.e., not A), such as “x was not a
British citizen at the time of y’s birth” or “x was not settled in the U.K. at the time of
y’s birth.”

Such negative conclusions require an ability to deal with ordinary or classical
negation, something that Prolog does not support. Prolog can employ only “negation
by failure.” The theorem prover uses a rule, “infer not P if fail to show P.” In other
words, if there is a finite list of ways to showA, the theorem prover will check them all.
If all of them fail, then it concludes not A. Negation by failure is adequate when one
can make the “closed world assumption” (that is, that anything which is not known
is assumed to be false).

Often, however, the closed world assumption is not reasonable. “It is notoriously
difficult in law to determine all the legal provisions that might be relevant to deciding
a particular case” (Sergot et al., 1986, p. 379). The researchers demonstrated some
formulations in the BNA where using negation by failure would be prohibitively
complex or lead the program to draw conclusions opposite from what the legislature
intended. For instance, consider the difficulty of listing all of the ways that x can be
shown to be a British citizen at the time of y’s birth.

A theorem prover that can handle classical negation could deal with this problem
automatically, but Prolog’s theorem prover would require an extended logic, which
introduces other difficulties. As a result, the researchers simply resorted to having
the BNA program ask the user to confirm certain negative information such as that
“x was not a British citizen at the time of y’s birth” (Sergot et al., 1986, p. 381).

Default Reasoning
The authors point out that the BNA employs reasoning by default. “Conclusions
made by default in the absence of information to the contrary may have to be
withdrawn if new information is made available later” (Sergot et al., 1986, p. 381).

One example is section l-(2) of the BNA, the provision that deals with abandoned
infants. What would happen, the authors ask, if the abandoned infant’s parents, to
whom citizenship had been conferred by default, suddenly turned up but were not
British citizens? (Sergot et al., 1986, p. 381). The BNA does not seem to have a
provision for that eventuality, but even if it did, there would be a problem.

Default reasoning is non-monotonic: propositions once proven may need to be
withdrawn in light of new facts. Predicate logic (i.e., classical first-order logic as

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 51 — #14

Modeling Statutory Reasoning 51

implemented in Prolog) is monotonic; it does not support withdrawing propositions
that have been proven.2

As discussed below, a more expressive logic is required.

Counterfactual Conditionals
Statutes also commonly make use of counterfactual conditionals such as “would
have [become a British Citizen] but for his having died or ceased to be a citizen . . .

[by] renunciation.” The legislature may employ such a formulation as a shortcut
means of reference. “The drafters avoid listing a complicated set of conditions explic-
itly by [referring] to some other part of the legislation” from which the conditions
may be inferred (Sergot et al., 1986, p. 382).

The researchers created special rules to deal with such counterfactual
conditionals. They wrote “additional alternative rules; one set describing, for
example, the conditions for acquisition of citizenship at commencement for indi-
viduals who were alive on that date, and another set for individuals who had died
before that date, but otherwise met all the other requisite conditions before death”
(Sergot et al., 1986, p. 382).

The researchers carefully analyzed the statute to hypothesize which requirements
might reasonably apply in the counterfactual condition. This increased the number
of rules that needed to be formalized. Presumably, the legislative drafters employed
the counterfactual condition to avoid the tedious task of spelling out these conditions.
On the other hand, it is always possible that the drafters meant to leave the issue
open-ended.

In any event, it is another example where knowledge engineers are required to
make difficult interpretive decisions without legislative authority.

Open-Textured Terms
Finally, the legislature employed open-textured predicates in the statute that they
did not define. The act contains such vague phrases as “being a good character,”
“having reasonable excuse,” and “having sufficient knowledge of English” (Sergot
et al., 1986, p. 371).

The researchers adopted a straightforward approach to dealing with vague terms.
The system simply asks the user whether the term is true or not in the current inquiry.
Alternatively, they might have programmed it to assume that a particular vague con-
cept always applied (or always did not apply) and to qualify its answer based on this
assumption, for instance: “Peter is a citizen, if he is of good character” (Sergot et al.,
1986, p. 371). The researchers note that one might also apply rules of thumb, derived
from analysis of past cases where courts applied the terms, in order to reduce the
terms’ vagueness. Such heuristic rules, however, would not be guaranteed to cover
all cases, nor would they be authoritative.
2 In fact, Prolog is non-monotonic, but the implementation used for the BNA program assumed that a

user had perfect information and could always answer the questions it posed (Gordon, 1987, p. 58).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 52 — #15

52 Computational Models of Legal Reasoning

The problems of resolving syntactic ambiguity, reformulation, negation, counter-
factual conditions, and semantic ambiguity are problems of interpreting natural
language text. Potentially, they affect any attempts to translate legislation into
runnable computer code regardless of whether humans are performing the trans-
lation manually, as in the BNA program research, or programs are extracting the
rules automatically from statutory texts as discussed in Chapter 9.

2.4. the complexity of statutory interpretation
and the need for arguments

The BNA project focused on “the limited objective of implementing rules and regu-
lations with the purpose of applying them mechanically to individual cases” (Sergot
et al., 1986, p. 372). The BNA program was never intended to simulate the output
of a court’s reasoning about a statute, but it is interesting to compare the way it gen-
erates an answer through logical deduction as illustrated in Figure 2.5 with what a
court might do.

In a landmark piece, the legal philosopher Lon Fuller demonstrated the limita-
tions of a mechanical approach to applying legal rules. Does “a truck used in World
War II” to be “mount[ed] on a pedestal in the park” and “in perfect working order”
fall afoul of the no-vehicles-in-the-park regulation? (Fuller, 1958, p. 663). Or suppose
that a municipal regulation states, “It shall be a misdemeanor, punishable by a fine
of five dollars, to sleep in any railway station.” A policeman encounters two people
in the station:

The first is a passenger who was waiting at 3 A.M. for a delayed train. When he was
arrested he was sitting upright in an orderly fashion, but was heard by the arresting
officer to be gently snoring. The second is a man who had brought a blanket and
pillow to the station and had obviously settled himself down for the night. He was
arrested, however, before he had a chance to go to sleep. (Fuller, 1958, p. 664)

According to a mechanical application of the rule, the first person violates the rule
but the second does not; the former is asleep in the railway station but the latter is
not. Given the likely purpose of the municipal regulation, however, this seems to be
exactly the wrong result. As Fuller asks, “[I]s it really ever possible to interpret a word
in a statute without knowing the aim of the statute?” (Fuller, 1958, p. 664).

The process of establishing the meaning of a statutory provision and applying it
in a concrete fact situation is commonly referred to as statutory interpretation. A law
court engages in statutory interpretation when it applies “statutes to particular cases
with a view to giving authoritative and binding decisions upon the matters in dispute
or under trial,” “forms a view as to the proper meaning of the statutes which seem
to them applicable in the case,” and articulates a “view as to the way in which the
statute should be understood” (MacCormick and Summers, 1991, p. 11f).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 53 — #16

Modeling Statutory Reasoning 53

The process of statutory interpretation involves logical deduction but is quite a bit
more complex. MacCormick and Summers identify a hierarchy of types of statutory
interpretive arguments, including:

– Linguistic: arguments from the statute’s ordinarymeaning or technicalmeaning
(i.e., legal or domain-specific technical meaning).

– Systemic: arguments from contextual harmonization, from precedent, and by
analogy, logical-conceptual arguments, and arguments from general principles
of law and from history.

– Teleological/Evaluative: arguments from purpose and from substantive reasons.
– Transcategorical: including arguments from intention (MacCormick and

Summers, 1991, pp. 512–15).

An argument from the purpose of the municipal regulation banning sleeping in
railway stations would be an example of a teological/evaluative argument. The list
of acceptable techniques and their labels are relative to a legal system or tradition
and may be subject to debate.

2.4.1. A Stepwise Process of Statutory Interpretation

The authors organize these argument types into a simplified, nearly algorithmic
model for statutory interpretation (MacCormick and Summers, 1991, p. 531). Accord-
ing to the process, in interpreting a statutory provision, one considers three levels of
argument in the following order: (1) linguistic arguments, (2) systemic arguments,
and (3) teleological-evaluative arguments.

More specifically, the process specifies steps for making decisions based on the
arguments:

Level 1: Accept as prima facie justified a clear interpretation at level 1 unless there
is some reason to proceed to level 2;

Level 2: Where level 2 has been invoked for sufficient reason, accept as prima facie
justified a clear interpretation at level 2 unless there is reason to move to
level 3.

Level 3: If at level 3, accept as justified only the interpretation best supported by
the whole range of applicable arguments (MacCormick and Summers,
1991, p. 531).

Generally, in the above series of steps, the authors recommend that arguments
from intention and other transcategorical arguments (if any) be taken as grounds
which may be relevant for departing from the above prima facie ordering.

Given this complex description of statutory interpretation, one can appreciate
Ann Gardner’s observation that law is a “rule-guided rather than a rule-governed
activity: ‘The experts can do more with the rules than just follow them . . . (they) can
argue about the rules themselves’ ” (Gardner, 1985 quoted in Berman and Hafner,
1988, p. 208).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 54 — #17

54 Computational Models of Legal Reasoning

In order to apply the jurisprudential model of statutory interpretation in
MacCormick and Summers (1991) to a concrete scenario, one might have to inte-
grate reasoning with rules, cases, and the underlying social values and legislative
purposes. Crucially, a reasoner would need to make or consider arguments for and
against an interpretation. Every step of the interpretive process involves making and
evaluating arguments of various types. A reasoner would need to draw analogies
between a current case and past cases where courts applied the legal rule or statute
and reason with the values and purposes underlying the legal rules articulated in
the statutes and precedents. Even if one would apply the statutory rule deductively,
he/she would need to consider whether the proposed result is consistent with the
purposes and policies underlying the statute.

Although the BNA program and other programs described in Part I of this
book implement computational models of legal reasoning, none of them imple-
ments a process of statutory interpretation as comprehensive as that described in
MacCormick and Summers (1991).

Instead, the AI & Law field has invented components that could implement
parts of the process. For instance, the BNA program constructed a proof from the
plain meaning of the statute as represented by Prolog rules. Chapter 3 describes
computational models of case-based legal reasoning and considers how to take
underlying policies and values into account. Chapter 5 describes computational
models of legal argument that provide a framework into which one could imag-
ine implementing a computational process of statutory interpretation using the
MacCormick/Summers model. See, for example, a preliminary formal framework
to capture such interpretive arguments in Sartor et al. (2014).

2.4.2. Other Sources of Legal Indeterminacy

If the goal is to model arguments for purposes of statutory interpretation, however,
there is a theoretical reason why classical logical deductive methods like those in
the BNA program will not suffice. Legal adversaries frequently start with different
premises. They disagree as to the facts of the case at hand or the rules of law that apply.
In law, however, it is common to encounter reasonable arguments for inconsistent
results where the adversaries appear to agree about the facts and about which legal
rules apply. As noted, this is the phenomenon of “legal indeterminacy” (Berman and
Hafner, 1988).

One source of legal indeterminacy has already been illustrated in the Johnson
case in Section 2.2.1. Legal rules employ open-textured legal concepts about which
reasonable but contradictory arguments are made.

Another source involves unstated conditions on the rule’s application, such as that
its result not be inconsistent with certain countervailing principles.

This is illustrated in the case of Riggs v. Palmer, 115 N.Y. 506 (l889) involving an
heir who killed his grandfather under whose will he was to inherit. The Court stated,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 55 — #18

Modeling Statutory Reasoning 55

“It is quite true that statutes regulating the making, proof and effect of wills, and the
devolution of property, if literally construed, . . . give this property to the murderer.”
(Berman and Hafner, 1988).

The Court, however, refused to enforce the statutes where it would contradict
“fundamental maxims of the common law,” “dictated by public policy,” that “[n]o
one shall be permitted to profit by his own fraud, or to take advantage of his own
wrong, or to found any claim upon his own iniquity, or to acquire property by his
own crime” (Berman and Hafner, 1988).

Legal rules may have other unstated conditions such as: Does the rule satisfy
choice of law requirements? Is the rule constitutional? Conceivably, some of these
conditions can be represented as additional conditions of legal rules. Berman and
Hafner point out, however, that abstract conditions like the frequently violated
“fundamental maxim” above would be very difficult to formalize (Berman and
Hafner, 1988).

Given the reality of legal indeterminacy, Berman and Hafner argued that classical
logical models are inappropriate for modeling how lawyers reason.

Legal indeterminacy presents a direct challenge to the concept of logical validity,
by the fact that a lawyer must be able to argue for either a conclusion or its opposite.

Suppose there is a theory T which has a consequence C (i.e., there is a valid
logical argument whose premises are the axioms of T and whose conclusion is C).
We then know that C is true in every model of T; that is, C is true in every universe
where T’s axioms are all true. We also know, by the law of contradiction, that if C
is true, then NOT C must be false: so, NOT C is false in every model of T. . . [w]e
can [also] show that no valid argument (no matter what additional assumptions we
make) that begins with the axioms of T can ever conclude NOT C.

[I]t is logically impossible to begin with a set of premises, and create a valid argu-
ment for both a conclusion and its opposite. This restriction certainly makes sense –
but in the law, such a “logical impossibility” seems to be precisely what happens!
(Berman and Hafner, 1988, p. 191).

Contradictory propositions are also problematic for classical logic models because
if both propositions are true, one can prove anything (see Carnielli and Marcos,
2001). An instructive example of this “explosive” feature of classical deduction, drawn
from the history of philosophy, is discussed in Ashworth et al. (1968, p. 184). A
sixteenth-century Italian demonstrated that “anything follows from an impossible
proposition, by proving that ‘Socrates is and Socrates is not’ entails ‘Man is a horse’ ”:

1. “Socrates is and Socrates is not implies Socrates is not.”
2. “Socrates is and Socrates is not implies Socrates is.”
3. “Socrates is implies Socrates is or Man is a horse.”
4. “(Socrates is or Man is a horse) and Socrates is not implies Man is a horse.”

Hence
5. “Socrates is and Socrates is not implies Man is a horse.”

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 56 — #19

56 Computational Models of Legal Reasoning

If one would like a computer to interpret statutes as a court does, by consider-
ing arguments pro and con and selecting the stronger arguments, ordinary classical
logical deduction is problematic. One needs to use something else. Logicians have
developed some alternative logics that can deal with inconsistency subject to various
constraints. In the field of AI & Law, however, the current answer to “what else is
there?” is a computational model of argument with appropriate argument schemes
as explained in Chapter 5.

2.5. management systems for business rules and processes

Not all problem-solving with statutes involves litigation to determine if a statute
has been violated. Not all reasoning with legal statutes involves complex issues of
interpretation and arguments pro and con. In many situations, businesses and insti-
tutions simply want to design their business processes and conduct their day-to-day
operations in such a way as to avoid violating the law. Surely, one can computation-
ally model legal rules for solving practical problems in a way that does not require
modeling full-scale statutory interpretation.

Indeed, most programs modeling statutes are probably designed to assist admin-
istration of institutional compliance to avoid litigation. The BNA program, for
example, was probably not designed to deal with litigation between adversaries seek-
ing to convince a judge about the meaning of a disputed term. Instead, it would
be more likely used as an administrative aid to address the run-of-the mill scenarios
involving questions of citizenship. An agency charged with administering the com-
plex BNA could use the tool to handle the large percentage of cases that are complex
enough as to befuddle civil servants but that ordinarily do not give rise to litigated
disputes about the meanings of the statutes or regulations.

Descendants of logicalmodels of statutes like the BNA program and of legal expert
systems likeWaterman’s in Section 1.3.1 still play a role in helping institutions comply
with relevant regulations.

2.5.1. Business Process Expert Systems

Companies are obligated to ensure compliance with complex legal requirements
and regulations. There is always a risk that an existing business process violates a
regulatory requirement or that a proposed modification will introduce a violation
at some point. Businesses also need an ability to document compliance to auditors
(Scheer et al., 2006, p. 143). This requires firms to identify the applicable legal rules
and regulations, to “define requirements resulting from these laws for the individ-
ual company,” to identify the particular business processes that are affected and the
“concrete risks which result from these requirements within [those] processes,” to
define measures and controls to minimize those risks, and to test whether they are
being applied (Scheer et al., 2006, p. 146).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 57 — #20

Modeling Statutory Reasoning 57

One way to implement the legal-risk-reducing measures and controls is to trans-
late the legal requirements and regulations into business rules, which, if followed,
reduce the risks in the affected business processes. “In general, business rules are
guidelines or business practices which design or lead the conduct of an enterprise”
(Wagner and Klueckmann, 2006, p. 126). Once business rules have been formu-
lated, human managers can enforce them as policies via the company’s ordinary
managerial hierarchy.

The business process rules can also be implemented in software systems that assist
human managers to ensure compliance (see Scheer et al., 2006, p. v). For example,
the expert system can warnmanagers about the need to conform company policies to
general regulatory requirements or warn managers of specific instances of noncom-
pliant behavior. The rules can be represented in a logical formalism as in the BNA
approach or, more likely, as heuristic rules as in Waterman’s program, Section 1.3.1,
and incorporated into an expert system designed to test whether a business process
is compliant.

Such business compliance expert systems are being applied in the commercial
sector. Today, companies like Neota Logic provide technology with which law firms
and companies can easily author their own expert systems for business compliance.
For instance, the Neota website reports that the law firm, Foley & Lardner LLP, has
authored a number of web-based expert systems modules under the name, Global
Risk Solutions, to guide clients in their efforts to ensure compliance with the Foreign
Corrupt Practices Act (FCPA), a federal anti-corruption/anti-bribery statute (Neota
Logic, 2016, Case Studies).

The modules collect information from a client concerning its marketing
methods, location business volume, and customers and outputs visual and quan-
titative assessments of a client’s business risks under the FCPA.

Another module provides more specific counseling based on automated infor-
mation gathering. “For example, if a GRS user clicks through a variety of intake
questions related to meals and entertainment, they are asked questions such as
whether they are going to entertain a foreign official.” Depending on the answers, a
Foley attorney can follow-up with specific counseling.

Where the business rules are formulated in propositional form, they can also
be organized graphically in ways that are more intelligible to business personnel.
For example, propositionalized business rules can be organized in a kind of work
flowchart not unlike that shown in Figure 2.3. Since humans can readily understand
the flowcharts, they are an effective way to communicate the legal requirements to
employees and for purposes of audits. Norm graphs are another visual tool that can
assist with business compliance.

A norm graph embodies “an abstract model of the legal norms” (Dietrich et al.,
2007, p. 187). For each legal compliance result of interest, a graph is constructed,
which “enables [one] to decide whether [an] intended legal result can be reached
or not . . . [It] consists of legal concepts (represented by nodes) and links between

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 58 — #21

58 Computational Models of Legal Reasoning

them (represented by arrows)” (Oberle et al., 2012, p. 281). The “norms determine
a legal consequence (LC), given one or more states of facts (SF)” (Dietrich et al.,
2007, p. 187).

Norm graphs are conceptually organized to support a process of subsumption,
a kind of taxonomic reasoning with an ontology, a lexicon of concepts organized
hierarchically (Oberle et al., 2012).

[T]he norms in the positive law do not address singular cases but rather cover gen-
eral classes of real-world situations. [A decision maker] faces a specific real-world
situation . . . [and] must try to find the norms whose general domain covers the
situation (subsumes the situation) . . . [T]o mechanize subsumption the semantics
must be considered . . . beyond thesauri. Ontologies . . . reflect semantic relation-
ships between terms, and these relationships can particularly be defined [to] directly
support the subsumption process.” (Dietrich et al., 2007, p. 188)

The norm graphs in Figure 2.6 illustrate subsumptionwith legal norms. The figure
shows norm graphs for two legal conclusions involving compliance with data protec-
tion regulations, here the German Federal Data Protection Act (FDPA) concerning
the legality of data collection and effective consent:

Section 4 (1) FDPA Legality of data collection, processing, and use: The collec-
tion, processing, and use of personal data shall be lawful only if permitted
or ordered by this Act or other law, or if the data subject provided consent.
(Oberle et al., 2012, p. 285)

Section 4a (1) FDPA Effective Consent: Consent shall be given in writing unless
special circumstances warrant any other form . . .Consent shall be effective
only when based on the data subject’s free decision. Data subjects shall be
informed of the purpose of collection, processing or use and, as necessary
in the individual case, or on request, of the results of withholding consent.
(Oberle et al., 2012, p. 287)

The norm graphs have associated rules or tests represented in predicate logic,
which determine if the legal conclusions apply. For instance, the following formula
abstracts the norms in section 4a (1) FDPA Effective Consent associated with the left
side of Figure 2.6 (see Oberle et al., 2012, p. 293).

Effectiveness(E) AND givenFor(E,C)← (Consent(C) AND givenIn(C,F) AND
WrittenForm(F)) OR Exception(F) AND . . .

This formula means that the result E of Effectiveness is assigned to Consent C if the
result F assigned to Consent C is WrittenForm or Exception and some other condi-
tions, not shown, are satisfied. Another formula specifies when the result Exception
is assigned to F.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 59 — #22

Modeling Statutory Reasoning 59

Legal conclusion: Legality

§ 4 (1) Legality of collec�ng,

processing, and using data

§ 3 (5) Using

data

§ 4a Consent

made effective consent

form in which given

based on

in
fo

rm
e

d

a
b

o
u

t

in
fo

rm
s

a
b

o
u

t

given by

Effective?

Consent?

holds for

Subject of data

Uncoerced

decision?

Required

information

Purpose of

collecting
Results of not

giving consent

Other details

Controller
Other

Written

Electronic

Information
Natural
person Identifiable

§ 3 (1) Personal data /

data subject

§ 3 (4) Processing

data

figure 2.6. Norm graphs for concluding “Legality” in section 4 (1) FDPA and “Effective
Consent” (see Oberle et al., 2012, pp. 305–6, Figs. 13 and 14)

With rules like these, an expert system could warn managers of the require-
ments that need to be satisfied in order to conclude that a business process is in
compliance. The program could apply the tests to descriptions of real-world situa-
tions to determine if they are instances of the top-level norm classes representing the
legal conclusions of interest, that is, whether the top-level concepts subsume the fact
descriptions. For the subsumption to work, however, the factual scenarios must be
represented in particular terms provided by a taxonomy of concepts associated with

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 60 — #23

60 Computational Models of Legal Reasoning

figure 2.7. Sample BPMN diagram of simple insurance claim process with business
rule annotations (see Table 2.1) (Koetter et al., 2014, Fig. 2, p. 220)

the regulated subject matter. In other words a subject matter ontology must also be
constructed, as discussed in Section 6.5.

2.5.2. Automating Business Process Compliance

A goal of some research is to streamline the compliance process by enabling an
expert system to analyze a model of the business process directly. The inputs to such
an expert system are business process models, formal descriptions of proposed or oper-
ating business processes. These processes can be represented graphically in terms of
schematic descriptions using the Business Process Model and Notation (BPMN), a
standardized, modularized visual iconography for this purpose. The models can also
be represented in a formal rule-modeling language so that expert systems can reason
with them.

As noted, if an appropriate language for formalizing business rules is available
and if it is compatible with the language for formalizing the descriptions of the busi-
ness processes, then the business rules can be applied directly to the process model
descriptions. In effect, the business rules are used to “annotate” the process models
(and their graphical representations) in order to assess compliance.

For example, a BPMN diagram of a simplified insurance claim management pro-
cess is shown in Figure 2.7. This insurance company happens to be subject to various
requirements of the German Insurance Association (GDV) and to data protection
laws in the German Federal Data Protection Act (FDPA). A human expert has trans-
lated those requirements manually into a set of three business rules, R1 through
R3, shown in Table 2.1. The figure shows where each rule applies to the modeled
process.

First, let’s examine more closely what these three business rules are and where
they came from. Human experts, knowledgeable about the business processes, need
to know which regulations apply to such an insurance claim process in the relevant
jurisdictions; here it happens to be a insurance company operating in Germany.
For instance, according to Koetter et al. (2014), at least two regulatory provisions

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 61 — #24

Modeling Statutory Reasoning 61

table 2.1. From regulatory texts to business rules to annotations of business process (see
Figure 2.7) to predicate logic forms (Koetter et al., 2014, p. 220)

Paraphrased Business rules As applied to Predicate logic form
regulations business process

GDV Code of
Conduct §§5–8:
customer who
provides personal
data must be asked
for agreement if
this data is to be
used for marketing
purposes. This
agreement has to
be solicited within
a short time span.

R1: After activity
Receive claim an
activity asking the
claimant for
agreement has to
follow.

R2: Activity asking
for agreement has
to be performed at
most 14 days after
activity Receive
claim.

R1: Follow this
by sending a data
privacy notification

R2: Send at most
14 days after claim
is received

followedBy(“Receive
claim,” “Send
claim and data
privacy notification”)
AND unknown

followedBy(“Receive
claim,” “Send
claim and data
privacy notification”)
AND maxTime
BetweenActivities
(“Receive claim,”
“Send claim and data
privacy notification,”
“14 days”)

German company
outsourcing its
data processing
must ensure service
providers comply
with German
FDPA §4b II
sentence 1 BDSG
re processing,
storage, and
exposure of
personal data.

R3: Customer
DB shall not be
hosted outside of
Germany.

R3: Do not store
outside of Germany

hostingRegion
(“CustomerDB,”
“Germany”)

apply to the claims process in Figure 2.7. They are shown in the first column in
Table 2.1.3

The human expert would need to read the actual provisions (i.e., the GDV code
of conduct and the German FDPA provisions) and manually translate them into
paraphrases and propositions summarizing the requirements like the three business
rules shown in the second column of Table 2.1 (see Koetter et al., 2014).

3 In column 1, the paraphrases of provisions in the code of conduct of theGerman Insurance Association
(GDV) §§5–8, and in the German FDPA §4b II sentence 1 BDSG, are adapted from the authors’
paraphrases in Koetter et al. (2014).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 62 — #25

62 Computational Models of Legal Reasoning

The business rules then need to be operationalized so that they can be applied
to the specific business process model in question, perhaps with the assistance of a
business process expert. The third column presents a simplified version as applied
to the business process in Figure 2.7 (see Koetter et al., 2014).

A final step is to translate the operationalized rules, perhaps with the help of a
knowledge representation specialist, into the predicate logic form shown in column 4
so that they can be applied by an expert system.

Translating the legal requirements and regulations into business rules is a com-
plex interpretive task involving text understanding, commonsense reasoning, and
business experience. For instance, German FDPA §4b II sentence 1 BDSG states:

1. The transfer of personal data to bodies

1. in other Member States of the European Union, . . .
shall be subject to Section 15 (1), Section 16 (1) and Sections 28 to 30a in
accordance with the laws and agreements applicable to such transfer, in so
far as transfer is effected in connection with activities which fall in part or
in their entirety within the scope of the law of the EuropeanCommunities.

2. Sub-Section 1 shall apply mutatis mutandis to the transfer of personal data . . .
to other foreign, supranational or international bodies. Transfer shall not be
effected in so far as the data subject has a legitimate interest in excluding trans-
fer, in particular if an adequate level of data protection is not guaranteed at the
bodies stated in the first sentence of this sub-section.

3. The adequacy of the afforded level of protection shall be assessed in the light
of all circumstances.

4. Responsibility for the admissibility of the transfer shall rest with the body
transferring the data.4

Formalizing this provision in its entirety would be very difficult, but a human
expert would know that it is perhaps unnecessary. The expert might know from
experience that the easiest way to finesse this requirement concerning the Act’s
protections of personal data would be to avoid transferring the personal data out
of Germany. Thus, the expert would prepare a business rule (R3 in Table 2.1) as a
kind of heuristic rule of thumb to ensure that the data is processed only in Germany
(Koetter et al., 2014).

2.5.3. Requirements for a Process Compliance Language

Predicate logic alone is not adequate for the task of modeling the application of
regulatory rules to business process models. A suitable language needs to support:

1. Reasoning with defeasible legal rules.
2. Isomorphic linking from the logical rules to regulatory sources.

4 English translation fromwww.gesetze-im-internet.de/englisch_bdsg/englisch_bdsg.html, last accessed
August 6, 2016.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 63 — #26

Modeling Statutory Reasoning 63

3. Expressing the kinds of obligations that statutes and regulations employ.
4. Temporal reasoning (Gordon et al., 2009).

Each of these requirements is briefly described below.

Defeasible Legal Rules
First, the language has to support defeasible legal rules. Defeasible rules have the
property that:

When the antecedent of a rule is satisfied by the facts of a case, the conclusion of
the rule presumably holds, but is not necessarily true. (Gordon et al., 2009)

The need for defeasible legal rules arises because, “Legal rules can conflict,
namely, they lead to incompatible effects” (Gordon et al., 2009). One legal rule
may be an exception to the other or exclude it as inapplicable or otherwise under-
mine it. We have encountered this above. As Berman and Hafner observed, “the
logic-based formalism breaks down when applied to cases involving the existence of
conflicting rules and precedents” (Berman and Hafner, 1988, p. 1). In addition, as
discussed above, reasoning with legal rules often involves reasoning by default, and
such reasoning is non-monotonic. Proven propositions may have to be withdrawn,
that is, reasoning with legal rules is defeasible.

When designing business processes to ensure compliance with legal regulations,
we have assumed that modeling litigation-style arguments about conflicting rules
could be avoided. Nevertheless, according to Guido Governatori, a veteran modeler
of business process compliance, the language still needs to support “the efficient
and natural treatment of exceptions, which are a common feature in normative
reasoning” (Governatori and Shek, 2012).

For example, in Figure 2.2, compare the complex textual version of the IRC provi-
sion (IRC section 354) and the propositional formwith its simplified logical structure
on the right.

Linking to Regulatory Sources for Explanation and Maintenance
Since business management systems monitor compliance, the system’s rules must
be updated, maintained, and validated and its results must be explainable with ref-
erence to the regulatory texts. These functions are simplified to the extent that the
linkages between the logical versions of the rules and their sources in the regulatory
texts are straightforward. More specifically, the legal rule modeling language needs
to support isomorphism:

There should be a one-to-one correspondence between the rules in the formal
model and the units of natural language text which express the rules in the original
legal sources, such as sections of legislation. (Gordon et al., 2009)

Ideally, the language maintains a one-to-one correspondence between the rules
in the formal model and the sections of the regulatory texts. “This entails, for

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 64 — #27

64 Computational Models of Legal Reasoning

example, that a general rule and separately stated exceptions, in different sections of
a statute, should not be converged into a single rule in the formal model.” (Gordon
et al., 2009).

Maintaining isomorphism makes explanation more effective. Business rule sys-
tems can explain their analyses by recapitulating the rules that “fired,” as illustrated
above in the output of the BNA system. In the context of an audit, however, explain-
ing the compliance analysis in terms of the business rules is not sufficient. An
explanation must justify it in terms of the textual statutory provisions, not simply
the business rules that a human expert has constructed to interpret and operational-
ize those provisions. For purposes of citing statutory texts and interweaving textual
excerpts, an isomorphic mapping is essential.

Isomorphic mappings between statutory text and implementing rules, however,
are difficult tomaintain. Frequently, themapping is complex especially wheremulti-
ple, cross-referenced provisions are involved. The versions of statutes and regulations
that computers can reason with logically are different from the authoritative textual
versions. Statutes may be so convoluted that even a “faithful representation” remains
unhelpful. As Layman Allen noted, statutes may include complex and sometimes
implicit exceptions and cross-references both within and across provisions.

The fact that statutes and regulations are dynamic complicates maintaining the
correspondence. The legislature may modify statutes or enact new ones, agencies
may revise and update regulations, and court decisions announce new interpreta-
tions of the provisions’ requirements. Even when the set of statutory provisions to
be implemented is taken as static, as discussed in Section 2.3.4, the development
of the BNA program was a process of trial-and-error requiring frequent revision to
accommodate newly encountered rules.

When regulatory texts are amended, both the textual and corresponding logical
versions need to be updated. Rule-based legal expert systems (e.g., like Waterman’s
program in Section 1.3.1) that use heuristic rules to summarize statutes avoid some
aspects of the maintenance problem, but they still need to be updated when the
statutes and regulations change. Since updating introduces modifications and addi-
tions to the rule-set, it is also important to revalidate the business rules whenever
they are introduced or modified, in part by comparing them to their sources.

Some automated techniques have been developed to maintain isomorphic repre-
sentations of regulations. The development environment in Bench-Capon (1991), for
example, maintained a complex set of linkages between textual, logical, and inter-
mediary representations of statutes. In such an environment, changes to the rules
can be undertaken in a localized fashion. The links between the textual and logical
rules can assist validation. In addition, decision aids such as textual excerpts from the
statutory rules and links to commentary and cases can be linked into the program’s
logical explanations of a conclusion. Techniques for maintaining this faithful repre-
sentation, however, require maintaining multiple representations (this development
environment had three) and require complex software to keep track of them all.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 65 — #28

Modeling Statutory Reasoning 65

Able to Express Different Types of Obligations and Reason Temporally
A language for business process compliance modeling needs to have the right
“semantics” for expressing the kinds of normative concepts that statutes and regu-
lations employ and the kinds of obligations they impose. The obligations may differ
in terms of whether it:

– needs to be obeyed at all time instances in the interval in which it is in force,
– needs only to be achieved at least once while it is in force,
– could be fulfilled even before the obligation is actually in force,
– needs to be achieved immediately or else a violation is triggered,
– is such that a violation can be compensated for, or
– persists after being violated. (Hashmi et al., 2014)

A language that supports expressing these different types of obligations also needs
to be able to reason temporally. Beside how long an obligation holds, legal rules
have other temporal properties including “the time when the norm is in force and/or
has been enacted” and “the time when the norm can produce legal effects.” For a
discussion of techniques for maintaining and reasoning temporally with multiple
versions of statutory provisions (see Palmirani, 2011).

2.5.4. Connecting Legal Rules and Business Processes

The Process Compliance Language (PCL) was designed to satisfy all of the above
requirements (Hashmi et al., 2014). It can represent legal rules as defeasible and
avoids the problems of reasoning with contradictory rules. It also can define obliga-
tions with the above semantics and reason temporally.

A complex business process may have a lot of moving parts, however, and compli-
ance needs to be assessed when the process is in operation. How does the model
represent a process without oversimplification so that the business rules can be
applied realistically?

For this to work, the model must account for the artifacts the business process
produces and the changes that it makes in its environment (Hashmi et al., 2014,
p. 104). The authors model a business process as a workflow-net, a kind of Petri net.
Petri nets (introduced by the German mathematician and computer scientist C.A.
Petri in 1962) are used to represent processes abstractly. Petri nets are not unlike the
ATNs in Section 1.4.2, another kind of process representation. There, the process
modeled was a legal one, the process of offer and acceptance in contract law. The
nodes in Gardner’s ATN represented states in the legal analysis; the arcs represented
the possible transitions from one state to another governed by legal rules associated
with each arc.

Petri nets are different from ATNs, however, in that they use two types of nodes,
places and transitions, with arcs connecting one type of node to the other. In addi-
tion, the production and consumption of “tokens” are used to represent the events

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 66 — #29

66 Computational Models of Legal Reasoning

figure 2.8. Petri net representing simple producer–consumer resource allocation
problem (see Kafura, 2011, p. 8)

that occur in the process and the changes in the system’s state that an event causes.
In a Petri net, each event is modeled as a transition that consumes and produces
tokens, and “the state of a system is modeled at any moment by a distribution of
tokens in the net’s places” (Palanque and Bastide, 1995, p. 388).

Places and transitions are connected by directed arcs, which define when each tran-
sition is allowed to occur, and what the effect of its occurrence will be. A transition is
allowed to occur when each of its input places holds at least one token; The occur-
rence of the transition consumes a token in each input place and sets a token in
each output place. (Palanque and Bastide, 1995, p. 388)

The Petri net in Figure 2.8 represents a simple producer–consumer scenario
involving resource allocation synchronization. Rectangular nodes represent transi-
tions; circular nodes represent places. In this example, the resources are “items” that
are produced and consumed. The items may be widgets, but they may also comprise
information. A producer creates new items but may not generate a new item unless
the number of available items is less than some maximum number. The consumer
accepts one produced item at a time, but cannot accept an item unless at least one
is available.

The capacity of the warehouse in the middle of the figure constrains the max-
imum number of available items. In this example, the maximum number is five,
represented by the total number of tokens in the Full and Empty places: four in
the Empty place plus one in the Full place. Thus, the figure represents a situation
after the initial state where the producer has generated one item for the consumer to
accept as represented by the token in the Full place. The producer then generated

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 67 — #30

Modeling Statutory Reasoning 67

a new item in the Generate place and is ready to ship it to the warehouse when the
item transitions to the Ready place. The production transition, however, may only
occur (i.e., “fire”) when there is a token in the Empty place. Similarly, the accept
transition can only fire when the consumer is ready, that is, there is a token in the
consumer’s Ready place at the lower right, and at least one token in the Full place.
Once accepted, the item may be consumed.

The Petri net model of the process can be implemented in software with rules
defining the conditions for the transitions. According to the transition rules, a tran-
sition is enabled (that is, the transition can fire) “when there is at least one token
on each of the transition’s input places; when a transition fires it removes one token
from each of its input places and produces a single token on each of its output places”
(Kafura, 2011, p. 2). One could imagine variants of the transition rules that change
the maximum possible number of available items or that specify the (likely differ-
ent) numbers of items that can be produced or consumed at a time or the rates of
production and consumption.

While admittedly very simple, the Petri net in Figure 2.8 conveys an intuition
about how a complex business process can be modeled in software. Petri nets can
model nondeterministic system behavior; “If there is more than one enabled transi-
tion any one of enabled transitions may be the next one to fire” (Kafura, 2011, p. 2). A
Petri net extension, labeled workflow net, makes traces of a process’s possible execu-
tion sequences; it requires each node of process model to lie on direct path between
the sole source and end places, and labels some transitions as “visible” (Hashmi et al.,
2014, pp. 104, 111).

The traces of the business process operation generated by the labeled workflow
net can be the inputs for an expert human, or for an expert system with formalized
business rules, to analyze for compliance. The business rule obligations are associ-
ated with “each task in a trace . . . [and] represent the obligations in force for that
combination of task and trace. These are among the obligations that the process has
to fulfill to comply with a given normative framework” (Hashmi et al., 2014, p. 108).
A program evaluates whether those facts, associated with the tasks and recorded in
the traces, that should be true according to the business rules really are true.

The compliance analysis can be performed at various points in the life cycle of a
business process:

Design-time: When the process is being designed, by analyzing the developing
processmodel in a computerized design environment that enforces compliance
with regulatory constraints a priori.

Run-time: While the process is running, by governing how the process unfolds to
ensure execution is in compliance.

Post-execution: After execution, by analyzing a trace or history of the operations of
a process to identify instances of noncompliance.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 68 — #31

68 Computational Models of Legal Reasoning

In order to make the determinations at design-time, run-time, or post-execution,
a workflow net representing the business process at that point needs to be constructed
and traces of its operation need to be generated for analysis (see Hashmi et al., 2014,
p. 112).

2.5.5. Example of Business Process Compliance Modeling

Hashmi et al. (2014) applied the PCL to model regulation of a business process
for complaint handling under the Australian Telecommunication Consumers Pro-
tection Code (TCPC) 2012. The code specifically mandates that every Australian
entity operating in the telecommunication sector must certify that their day-to-day
operations comply with the code.

Specifically, they modeled TCPC § 8, which governs the management and han-
dling of consumer complaints (Hashmi et al., 2014, p. 113f). TCPC §8 was manually
mapped into “176 PCL rules, containing 223 PCL (atomic) propositions (literals)”
using all of the obligation types listed above. The authors secured the regulator’s
informal approval of the business rules for purposes of the exercise.

With the assistance of domain experts from an industry partner, they drew pro-
cess models to capture the company’s existing procedures for handling complaints
and related matters under TCPC §8. This process resulted in six business process
models, annotated in terms of the relevant business rules, five of which were small
enough to be “checked for compliance in seconds.” Evaluating compliance in the
largest business process, with 41 tasks and 12 decision points, took about 40 seconds
of computational time (Hashmi et al., 2014, p. 114).

The system outputs a report of traces, rules, and tasks responsible for noncom-
pliance like that in Figure 2.9. Although the figure deals with a different business
process for opening credit card accounts, it illustrates the kind of information the
system can generate based on its analysis of a business process’s compliance. It iden-
tifies noncompliant execution paths and cites the regulatory rule that is the source
of a noncompliance issue.

In the compliance evaluation of the complaint handling process, the team identi-
fied various points at which the business processes failed to comply with TCPC §8.
“Some of the compliance issues discovered by the tools were novel to the busi-
ness analysts and were identified as genuine non-compliance issues that need to be
resolved” (Governatori and Shek, 2012). The noncompliance issues involved ensur-
ing that “some type of information was recorded in the databases associated [with]
the processes,” that customers were made “aware of documents detailing the esca-
lation procedure,” and that “a particular activity does not happen in a part of the
process.” Two of these noncompliance issues resulted from “new requirements in
the 2012 version of the code” (Hashmi et al., 2014, p. 114).

The team employed the compliance software environment to rectify some of the
noncompliance issues. The repairs included modifying the existing processes to

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 69 — #32

Modeling Statutory Reasoning 69

figure 2.9. Compliance system report of traces, rules, and tasks responsible for non-
compliance (excerpts) (see Governatori and Shek, 2012)

comply with the code or designing and adding some new business process mod-
els, such as a novel way to handle in person or by phone complaints (Governatori
and Shek, 2012; Hashmi et al., 2014, p. 114).

Governatori’s system performed real legal work in a realistic setting. It required
extensive manual effort, however, both in developing the business rules and in rep-
resenting the business process for analysis with the business rules. The formulation
of the business rules from the regulatory sources was entirely a manual effort. The
construction of the model of the business process as inputs for the business rules to
annotate appears to have been the result of an intricate manual task as well.

Governmental agencies might benefit from automating administrative process
compliance with regulations. van der Pol (2011) described a business process com-
pliance model to be fielded by the Dutch Immigration and Naturalization Service
(IND). An information system called INDiGO was to contain an expert system of
business rules based on relevant laws, regulations, and policies governing the pro-
cessing of IND clients’ applications. The rule engine would contain a model of the
process workflow including the order in which business services are to be executed,
and could be consulted to provide those services relevant to a client’s specific case
and circumstances. The system was to analyze trace histories of the operations of
the business process to identify instances of noncompliance, unsatisfactory results,
or inefficiencies and provide feedback to regulators on modifying relevant statutes

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 70 — #33

70 Computational Models of Legal Reasoning

and regulations. The goal is to create a flexible system in which changes in law,
regulation, or procedures could be implemented quickly through modifications of
relevant business rules in this rule engine (van der Pol, 2011). After auspicious begin-
nings, however, it is not clear whether the INDiGO project has succeeded due to a
lack of published information.

2.6. representing statutory networks

Expert systems and logic programming are not the only paradigms that can support
computational reasoning with statutes and regulations. Regulatory systems con-
tained in statutes can be represented as networks or graphs of the relations between
objects. The connected objects can be other statutes and provisions, a citation net-
work, or a set of reference concepts referred to by, and subject to, regulation across
multiple statutes, a statutory network diagram.

For instance, in a recent project, states’ systems of regulations for dealing with pub-
lic health emergencies are represented as networks of nodes. The nodes represent the
agents that a statute directs to communicate with other agents under specified condi-
tions (Sweeney et al., 2014). Using expert handcrafted queries, a team of researchers
retrieved candidate statutes concerning public health emergency preparedness from
the LexisNexis legal databases for 11 US states. Each provision was manually coded
according to a standardized codebook to identify if the provision was relevant and,
if so, the provision’s citation, the public health agents that are the objects of the pro-
vision, the action the provision directs and whether it is permitted or obligatory, the
goal or product of the action, the purpose of the statute, the type of emergency in
which the direction applies, and under what time frame and conditions (Sweeney
et al., 2014).

Once different states’ regulatory systems are represented as networks, the networks
can be compared visually and quantitatively using network analytical measures, and
tentative inferences can be drawn about a state’s regulatory scheme as compared
to another state’s scheme. For example, Figure 2.10 compares statutorily mandated
institutional interactions relating to emergency surveillance between Florida and
Pennsylvania.

Comparative diagrams like these can suggest hypotheses to public health sys-
tem analysts about the differences across states, which can then be studied in light
of the legislative texts. For instance, based on the white links in Figure 2.10, one
might ask why Community Health Centers and HomeHealth Agencies are linked to
other public health agents in Pennsylvania but not in Florida? Investigating possible
answers would involve researching the legislative texts in Pennsylvania and Florida.

The statutory network diagrams can help. They are a kind of visual interface into
a state’s statutes. They could enable researchers or field personnel to retrieve the
provisions that direct institutional agents’ interactions simply by clicking the network
links representing those interactions (Sweeney et al., 2014). Thus, a researcher could,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 71 — #34

Modeling Statutory Reasoning 71

figure 2.10. Statutory network diagram comparing Pennsylvania (PA) and Florida
(FL) statutory schemes re public health emergency surveillance: Circles indicate pub-
lic health system actors and partners in FL and PA. Grey links indicate relationships
present in both states; white links indicate legal relationships present in PA but not in FL
(Sweeney et al., 2014)

at least, retrieve the relevant statutes directing the linkages to Community Health
Centers andHomeHealth Agencies in Pennsylvania. Based on those texts, one could
frame queries for similar statutes in Florida using conventional legal IR tools. The
queries will reveal either that Florida law contains similar directives that have been
missed in constructing the statutory network, or more interestingly, that there is a
gap in Florida’s laws that policy-makers might conclude should be filled.

Tools like statutory network diagrams and citation network diagrams can help
humans solve problems involving statutory reasoning where the computer and
human share responsibility for performing the tasks most within each’s capabilities.
Chapter 11 on conceptual legal information retrieval examines more closely the use
of citation networks and statutory network diagrams in cognitive computing. Citation

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C02” — 2017/5/31 — 10:40 — page 72 — #35

72 Computational Models of Legal Reasoning

information can be extracted automatically from statutory texts or retrieved from a
repository of statutes and used to create citation networks. Creating a statutory net-
work diagram is more complex, requiring extensive manual encoding of the statutes.
Chapter 9 on extracting information from statutes addresses techniques to apply ML
to automate or semiautomate the encoding task for constructing statutory network
diagrams.

…

In the remainder of this book, we revisit the subjectmatter of representing business
rules, statutes, and regulations. Section 6.5 addresses the construction of ontologies
for statutes and regulations. Standardized schemes have been developed for anno-
tating or tagging statutes and regulations with procedural and substantive semantic
information that can then be used to search for relevant provisions. Chapter 9
explains how the automated approaches for extracting information from statutory
and regulatory texts can support conceptual information retrieval. Other projects,
discussed in Section 9.5, tackle the task of automatically extracting logical rules and
constraints from regulatory texts, focusing on a small set of regulations in repetitive
stereotypical forms.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.002
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:15:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.002
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 73 — #1

3

Modeling Case-based Legal Reasoning

3.1. introduction

Since legal rules employ terms and concepts that can be vague and open-textured, a
computational model of reasoning with cases would help. Courts often interpret the
meaning of legal terms and concepts by drawing analogies across cases illustrating
how a term or concept has been applied in the past.

This chapter presents computational models of analogical reasoning with legal
cases. The models are based on three basic approaches. The first, prototypes and
deformations, focuses on how to decide a case by constructing a theory based on past
cases. The second, dimensions and legal factors, employs stereotypical patterns of
fact that strengthen or weaken a side’s argument concerning a legal claim or concept.
The third, exemplar-based explanations (EBEs), represents legal concepts in terms
of prior courts’ explanations of why a concept did or did not apply.

The models illustrate how to represent legal cases so that a computer program can
reason about whether they are analogous to a case to be decided. In particular, they
illustrate ways in which a program can compare a problem and cases, select the most
relevant cases, and generate legal arguments by analogy for and against a conclusion
in a new case.

Legal rules and concepts are promulgated for normative purposes. Teleological
arguments (i.e., arguments from the purposes or values served by a rule) play an
important role in drawing legal analogies. Computationalmodels that integrate legal
rules, intermediate legal concepts (ILCs) from those rules, and cases applying the
rules need to take underlying values into account. This chapter introduces tech-
niques for computationally modeling teleological reasoning by integrating values
into the measures of case relevance and models of legal analogy.

None of these systems deals directly with legal texts. Instead, they work on the
basis of formal representations of case facts and legal concepts that have been
manually constructed. The assumption, however, has been that one day, these case

73
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 74 — #2

74 Computational Models of Legal Reasoning

representations will be extracted automatically from natural language texts of case
opinions or fact summaries. With text analytics, that day is fast approaching. The
chapter contrasts how amenable the different case representations are to text analytic
approaches and their implications for cognitive computing.

This chapter answers the following questions: How can legal concepts be repre-
sented computationally in a way that reflects their dialectical relationship with cases?
How can cases’ facts and courts’ reasoning be represented computationally? What
are prototypes and deformations, dimensions or factors, and EBEs? What aspects of
a court’s decision do they capture, and what aspects do they miss? What is a trump-
ing counterexample? What are semantic networks and “criterial” facts? How can the
legal relevance of a case to a problem be measured computationally? How can a pro-
gram select relevant cases, compare them in terms of similarity, analogize them to,
and distinguish them from fact situations and other cases?How can such programs be
evaluated empirically? What is teleological reasoning? What roles does teleological
reasoning play in drawing analogies across legal cases? What roles do hypotheticals
play in teleological reasoning? How can values underlying legal rules be represented
computationally, and how can a computer program integrate values into its methods
for selecting relevant cases, drawing analogies, and distinguishing cases?

3.2. relationship of legal concepts and cases

Computationalmodels of case-based legal reasoningmodel the interactions between
legal concepts and cases. The legal concepts correspond to the open-textured terms
in constitutional, statutory, or court-made legal rules. In common law and, to some
extent, in civil law jurisdictions, cases play a role in elucidating the meanings of the
open-textured legal concepts and in mediating the way in which those rules and
meanings change.

3.2.1. The Legal Process

Edward Levi famously contrasted the process of legal reasoning by example with
the pretense of law that it “is a system of known rules applied by a judge” (Levi,
2013, p. 1). For Levi, law involves a “moving classification scheme,” where the legal
concepts are the classifiers. “The kind of reasoning involved in the legal process
is one in which the classification changes as the classification is made. The rules
change as the rules are applied” (Levi, 2013, pp. 3–4).

In this process, courts decide whether the result of a precedent’s rule should
apply in a new case, in part by comparing the facts of the new case with those
of the precedent. In determining whether the new case is similar to or different
from a precedent, courts may elucidate but often muddy the meaning of the rule’s
legal concepts. When a concept’s meaning becomes too incoherent, a court may
introduce an exception to the rule by introducing a new legal concept, the rule

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 75 — #3

Modeling Case-based Legal Reasoning 75

is modified, and the process continues. Eventually, even the rule with exceptions
becomes incoherent, and a court jettisons it in favor of a new rule (Levi, 2013).

3.2.2. The Legal Process Illustrated

Levi illustrated the legal process in his recounting of the development of modern
product liability law. Strict product liability law, as modeled in Waterman’s legal
expert system (Section 1.3.1), originated in a process of case-based reasoning. Excep-
tions eroded the “privity” requirement limiting manufacturers’ liability in a series of
cases including Thomas v. Winchester, 6 N.Y. 397 (1852). The rule was replaced in
MacPherson v. Buick, 217 N.Y. 382, 111 N.E. 1050 (1916) and in the later formulation
of modern strict product liability law, for example, in the Restatement (Second) of
Torts.

As most American law students are taught, the longstanding common law rule had
been that “[a] manufacturer or supplier is never liable for negligence to a remote
purchaser” (Levi, 2013, p. 25). That is, “no privity, no liability.” There were some
exceptional fact situations where a manufacture was held liable even to a third party
despite the rule. In Thomas v. Winchester, a court announced a concept to name
the exceptions: if an item were imminently dangerous, there could be liability with-
out privity of contract. In subsequent decisions, courts classified various products as
imminently dangerous, and others not, and introduced some variations on the con-
cept, such as “inherently dangerous” or even “eminently dangerous.” After all, one
“concept sounds like another, and the jump to the second is made” (Levi, 2013, p. 8).

The process of classification continued with the courts seemingly enlarging the
class of inherently dangerous articles but refusing to allow recovery for articles that
were merely dangerous if defective:

One who manufactures articles inherently dangerous, e.g., poisons, dynamite, gun-
powder, torpedoes, bottles of aerated water under pressure, is liable in tort to third
parties. . . On the other hand, one who manufactures articles dangerous only if
defectively made, or installed, e.g., tables, chairs, pictures or mirrors hung on the
walls, carriages, automobiles, and so on is not liable to third parties for injuries
caused by them, except in case of willful injury or fraud. Cadillac v. Johnson, 221
Fed. 801, 803. (Levi, 2013, pp. 19–20)

Eventually, these example-based classifications may come to look silly and irra-
tional, and a court throws out the rule altogether. In MacPherson v. Buick, the New
York Court of Appeals allowed plaintiff MacPherson, a third party, to recover for
injuries caused by a Buick, a type of article the Court in the previous year had clas-
sified as dangerous only if defective, denying liability in the Cadillac case. In Judge
Cardozo’s landmark opinion, the Court ruled,

If the nature of a thing is such that it is reasonably certain to place life and limb
in peril when negligently made, it is then a thing of danger. . . If to the element

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 76 — #4

76 Computational Models of Legal Reasoning

of danger there is added knowledge that the thing will be used by persons other
than the purchaser, and used without new tests, then, irrespective of contract, the
manufacture of this thing of danger is under a duty tomake it carefully. 217 N.Y. 389.

In 1964, the rule regarding a seller’s liability for physical harm caused by defective
products to third-party users or consumers was transformed into the modern product
liability law thatWatermanmodeled. See Restatement, Second, Torts §402A. Special
Liability of Seller of Products for Physical Harm to User or Consumer.

3.2.3. Role of Legal Concepts

To summarize, according to Levi, legal concepts play a number of roles. They are
components of the rules of law. They have meanings and, to some extent at least,
support deductive reasoning about whether the concept applies to a new case. The
legal process is rule-guided to some extent, but it is far from just a matter of applying
the rules deductively to new situations (Levi, 2013).

A primary role of concepts is to focus on particular similarities that, at any given
time, society deems important in making this determination of justice. A legal con-
cept is thus a “label” that reifies these similarities across a collection of cases. Courts
reason with the similarities when they decide the new case. As Levi puts it,

The problem for the law is:Whenwill it be just to treat different cases as though they
were the same? Aworking legal systemmust . . . be willing to pick out key similarities
and to reason from them to the justice of applying a common classification. (Levi,
2013, p. 3)

In the process of deciding that certain cases are similar or different, legal rules
and their concepts change. A concept expands or contracts as courts decide that it
applies or not in new cases. In addition, the assessments of particular similarities as
relevant or irrelevant may change as social circumstances and values change. Thus,
previous analogies become suspect and lead to decisions now deemed unjust. When
the facts of cases stretch the concept’s meanings beyond credulity, a court may (sub-
ject to various constraints such as its place in the judicial hierarchy) replace it with a
new concept in a reformulated rule. Existing legal rules and the arguments in previ-
ous cases suggest new concepts for restricting, extending, or replacing existing rules
to deal with changed factual circumstances and social values (Levi, 2013) (see also
Ashley and Rissland, 2003).

A closer examination of the history of product liability law in Levi’s account iden-
tifies some features or factors courts applied in their example based on reasoning and
argument. Courts compared cases in terms of:

– Whether the manufacturer knew about the hidden defect.
– How difficult it would be to discover the defect.
– Whether the manufacturer had fraudulently hidden the defect.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 77 — #5

Modeling Case-based Legal Reasoning 77

– The likelihood that the article would be used by one such as the victim.
– Who had control of the article.
– How dangerous the article was.
– Whether the danger was because of some additional act.
– The nature of the injury resulting from the defect.
– Social expectations regarding reliance on the manufacturer (e.g., pharmacist,

auto manufacturer).

In the context of product liability, these are sensible criteria in terms of which
to compare cases and to assess the justness of a proposed outcome based on a rule
or interpretation of a legal concept (Ashley and Rissland, 2003). Changes in what
society wants and what technology affords affect which criteria are deemed impor-
tant. Focusing on different collections of these criteria as important leads to different
orderings of cases. The legal reasoning process (and the legal forum of which it is a
part) supports this dynamismwith its use of rules, concepts, and case examples (Levi,
2013).

3.3. three computational models of legal concepts and cases

Modeling case-based legal reasoning requires techniques to represent knowledge
about case facts and to assess legally relevant similarities. Since the models must
decide whether to treat cases the same way from a legal viewpoint, the similarities
and differences must be represented in a form that a program can process, analyze,
and manipulate.

Three types of computational models have been developed to represent case facts,
define relevant similarities and differences, and relate them to legal concepts and
to compare cases: prototypes and deformations, dimensions and legal factors, and
EBEs. The three models vary the mix of intensional and extensional elements they
employ to represent legal concepts. An intensional definition specifies the necessary
and sufficient conditions for being an instance of the concept. For example, a “vehi-
cle” is any instrument of conveyance used, or capable of being used, as a means
of transportation. An extensional definition simply provides examples of what is/is
not an instance of a concept. For instance, automobiles, bicycles, and a 103.1 cc
Harley-Davidson Low Rider motorcycle are examples of a “vehicle” but an inoper-
able World War II Sherman tank is not. As explained in Chapter 5, computational
models of legal argument now incorporate aspects of these case-based models in
their schemes for analogical argumentation.

Computational models of legal reasoning approximate the process of legal reason-
ing with cases and concepts. Given the complex interaction of concepts and cases
illustrated in Levi’s examples, AI&Law researchers necessarilymust simplify the pro-
cess. Specifically, the models focus on a comparatively small number of cases, for
example, 40 cases and hypotheticals involving workmen’s compensation, fewer than

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 78 — #6

78 Computational Models of Legal Reasoning

200 cases in trade secret law, or a half dozen property law cases involving hunters’
rights in quarry. In addition, the models all focus on an area of the law in a less
dynamic period, when the relevant concepts are more or less fixed and reasoning by
example is used to classify items as in or out of the concept (Levi, 2013, p. 9). This is
before the concept breaks down or is rejected because it obstructs a reclassification of
the cases. For instance, the trade secrets and workmen’s compensation cases involve
fairly static legal concepts. (Some interesting AI & Law work by Edwina Rissland,
however, does model and monitor conceptual change, Section 7.9.4).

Despite the constraints and simplifications, the developers try to ensure that the
resulting models are still complex enough to perform some useful tasks. The focus
has been on modeling the role of cases as exemplars of concepts and on normative
values as informing the determinations of similarity and difference.

3.3.1. Prototypes and Deformations

Thorne McCarty’s Taxman II program modeled arguments by analogy to past cases.
Legal concepts in Taxman II were represented intensionally and supplemented
extensionally using a technique called “prototypes and deformations.”

McCarty represented three components of legal concepts: “(1) an (optional)
invariant component providing necessary conditions; (2) a set of exemplars providing
sufficient conditions; and (3) a set of transformations that express various relation-
ships among the exemplars.” He referred to the exemplars as prototypes: precedent
cases and hypotheticals that were positive and negative examples of the legal concept
whose meaning was being argued about. The transformations were deformations,
mappings that allowed prototypes to be compared in terms of their constituent con-
cepts (McCarty, 1995, p. 277, see also McCarty and Sridharan, 1981). In terms of
Levi’s domain, for instance, “imminently dangerous” might be thought of as a proto-
type concept. Groups of cases deform it into “inherently” or “eminently” dangerous,
thereby preserving a quality of danger but partially altering it given the circumstances
of particular cases.

The Eisner v. Macomber Example
The program focused on one scenario at the heart of a U.S. Supreme Court case,
Eisner v. Macomber, 252 U.S. 189 (1920) concerning the issue of whether a pro rata
stock dividend in connection with a stock split was taxable income to its shareholders
under the Sixteenth Amendment to theU.S.Constitution. If not, it would fall outside
the Congress’s power to levy an income tax (McCarty, 1995). In the Eisner scenario,
Mrs. Macomber owned 2,200 shares of Standard Oil. When Standard Oil declared
a 50% stock dividend, she received 1,100 additional shares, part of which represented
accumulated earnings by the company.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 79 — #7

Modeling Case-based Legal Reasoning 79

This and related cases involved subsidiary concepts such as “distribution,”
“shares,” “bonds,” “common stock,” and “preferred stock.” For each of these, rule-
like templates represented the rights and obligations associated with the concept. For
instance, the rights of corporate interest holders specified that bondholders received
a fixed amount. Preferred stock holders received a fixed amount per share after bond-
holders. Common stock holders received a portion only of whatever is left after the
bondholders and preferred stock holders were paid.

As input, Taxman II received a description of the fact situation, expressed not in
natural language text but in terms of logic propositions employing the subsidiary
concepts. The program output “arguments” (also in propositional form) that the div-
idendwas or was not income, based on analogies to two prior cases and a hypothetical
example.

At the time of the Macomber decision, these real and hypothetical cases were
three available prototypes, positive and negative exemplars of taxable income, the
main legal concept whose meaning was subject to dispute:

1. The Lynch case: Distribution of a corporation’s cash was held to be taxable
income to the shareholder.

2. The Peabody case: Distribution by a corporation to shareholders of the stock
of another corporation was held to be taxable income.

3. The Appreciation Hypothetical: Appreciation in the value of a corporation’s
stock, held by the shareholder, without transfer of the shares was universally
assumed not to be taxable income.

The deformations included some built-in mappings like ConstantStockRatio,
which compared shareholder ownership ratios before and after a distribution.

Argument as Theory Construction
McCarty characterized legal argumentation about the meaning of a legal concept
as a kind of theory construction, which he justified as follows. An arguer constructs a
theory of how to decide an issue based on aligning the current facts with prototypical
exemplars. McCarty focused on the arguments of the taxpayer and the Internal Rev-
enue Service, as reflected in those of the majority and the dissent in the Macomber
case, and designed the program to reconstruct the arguments pursuant to a template
(or scheme). According to the argument template:

Taxpayer: defines taxable income so theEisner facts and any negative prototypes of
taxable income (the Appreciation Hypothetical) are excluded but any positive
prototypes (Lynch and Peabody) are included.

Internal Revenue Service: defines taxable income so Eisner and any positive proto-
types (Lynch and Peabody) are included but any negative prototypes of taxable
income (the Appreciation Hypothetical) are excluded.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 80 — #8

80 Computational Models of Legal Reasoning

In doing so, the program, in effect, searched for a theory that links the current case
with the favorable prototypes for a side (taxpayer or IRS) and excludes the unfavor-
able ones. Deformations ormappings across cases provided the rawmaterial for these
links. If a mapping preserves some constituent concept across the positive instances
and the current case, then the invariant property becomes the basis of a theory that
they should be decided alike.

The program employed argument strategies like looking for some continuum
that could serve as an invariant property across a problem and a favorable proto-
type case. In linking the Eisner facts and the nontaxable Appreciation Hypothetical,
the program found such an invariant via the built-in ConstantStockRatio mapping:
before and after the “distribution,” the taxpayer retained the same proportionate
share of ownership of the corporation. After the dividend, Mrs. Macomber owned
3,300/750,000 of the corporation, the same ratio as before (2,200/500,000). It is as
if there were no transfer.

If the program could not find an invariant property, it would search a space of
options in trying to construct one, for example, by selecting and applying elementary
mappings to build more complex ones. In trying to find conceptual links between
prototypes, the program reasons about themeaning of their constituent components.

This appears to be similar to human argumentative reasoning. Justice Brandeis
(in dissent) proposed a continuum linking distributions of equity, debt, and cash in
support of his argument that the distribution was taxable income: Distributions of
cash, bonds, preferred stock, and common shares all confer upon the recipient an
expected return of corporate earnings. They differ only in how much return and at
what risk. If one such distribution yields taxable income, so should all.

The program examined the prototypes’ constituent concepts and, apparently, dis-
covered or constructed the same continuum from the Lynch prototype’s taxable
distribution of a corporation’s cash to distribution of a corporation’s bonds, distri-
bution of its preferred stock, and distribution of its common stock (i.e., the Eisner)
scenario. Each confers on the recipient some trade-off between expected return of
corporate earnings and risk.

Utility of Prototypes and Deformations for Cognitive Computing
From a legal viewpoint, Taxman II’s model of arguing with concepts and cases
is both sophisticated and realistic. The model focused on legal argumentation as
constructing a theory by aligning selected cases in terms of a concept. Many attor-
neys, judges, and law clerks employ legal information retrieval systems to construct
arguments like these. The challenge for cognitive computing is how to design com-
puter programs that can assist users in constructing such arguments by formulating
theories, linking them to analogous positive case examples, and distinguishing them
from negative instances.

On the other hand, as a source of computational tools for achieving this goal,
McCarty’s approach in Taxman II may be too complex to be helpful. Searching

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 81 — #9

Modeling Case-based Legal Reasoning 81

through the intensionally defined subsidiary concepts and mappings in order to dis-
cover invariants is an intricate affair whose robustness still needs to be demonstrated
in domains involving issues other than the meaning of “taxable income.” Indeed,
the model was implemented for only one Supreme Court argument involving one
argued about legal concept and four cases.

3.3.2. Dimensions and Legal Factors

Dimensions and legal factors are knowledge representation techniques designed to
enable comparing the similarity of cases, drawing analogies to positive case instances,
and distinguishing negative ones. They provide a simpler, more extensional scheme
for representing legal concepts and cases than Taxman II that may be easier to
connect to case texts for purposes of cognitive computing.

Hypo’s Dimensions
As introduced in the Hypo program, legal “factors are a kind of expert knowledge
of the commonly observed collections of facts that tend to strengthen or weaken a
plaintiff’s argument in favor of a legal claim ” (Ashley, 1990, p. 27). “In Hypo, [legal]
factors are represented with Dimensions. A Dimension is a general framework for
recording information for the program to manipulate” (Ashley, 1990, p. 28, see also
Ashley, 1991).

As a note on terminology, “factor” has two meanings: (1) The term “factor” (lower
case) means a legal factor, the phenomenon that a dimension represents, namely a
stereotypical pattern of facts that tends to strengthen or weaken a plaintiff’s argument
in favor of a legal claim. (2) As we will see, the CATO program introduced Factors
(initial caps), a knowledge representation technique that simplified dimensions. Like
dimensions, Factors represent legal factors.

Hypo dealt with the claim of trade secret misappropriation, that is, where the
plaintiff claims defendant gained an unfair competitive advantage by using plain-
tiff’s confidential product information. It dealt with one legal concept, whether a
fact situation was an instance of trade secret misappropriation. For modeling this
concept, it employed 13 legal factors, represented by 13 dimensions, and used them
to index 30 trade secret cases.

The legal factors underlying the 13 dimensions were identified in a number of
sources including the Restatement (First) of Torts, section 757, Liability for Dis-
closure or Use of Another’s Trade Secret, which many jurisdictions adopted as an
authoritative statement of the law of trade secrets. Comment (b) identifies six factors
that courts should take into account in determining if information is a trade secret.
Other legal factors came from the opinions of trade secret cases, where courts iden-
tify particular factual strengths and weaknesses, and from treatises and law review
articles. These secondary sources tend to group cases in footnotes that illustrate the
effect on outcomes of particular factual strengths and weaknesses. They may also list

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 82 — #10

82 Computational Models of Legal Reasoning

figure 3.1. Secrets-Disclosed-Outsiders dimension in Ashley (1990)

counterexamples where a court reaches a conclusion in spite of a particular strength
or weakness.

As illustrated in Figure 3.1, each dimension instantiated a structured template of
information that defined prerequisites for the represented legal factor’s application to
a fact scenario. Since a case may be a more or less extreme example of a legal factor,
each dimension specified a focal slot whose value in a case could vary along a range
representing a stronger or weaker magnitude for the plaintiff. For instance, the focal
slot value for the Secrets-Disclosed-Outsiders dimension represented the number of
disclosures to outsiders in a case. The focal slot value for the Competitive-Advantage
dimension captured the amount of development time and cost saved by accessing the
plaintiff’s information. Cases can be compared in terms of their magnitudes along a
dimension, that is, in terms of their focal slot values. In the figure, the Data-General
case is rather remarkable with disclosures to 6,000 outsiders.

A legal factor’s magnitude, as represented by a dimension’s focal slot value, should
be distinguished from its weight. “A [legal] factor’s weight is some kind of measure
of the support it lends to a conclusion that the plaintiff should win a claim.” Hypo
did not represent a legal factor’s weight quantitatively. Instead, Hypo was intended
to express legal factors’ weights via arguments about specific scenarios.

One reason for not representing a legal factor’s weight numerically is that such
weights are context-sensitive. Three cases indexed along the Secrets-Disclosed-
Outsiders dimension in Figure 3.1 illustrate this. TheCrown andMidland-Ross cases,
both won by defendants, lie at the left end of the dimension; even a few disclosures
to outsiders can weaken a plaintiff’s claim. On the other hand, the plaintiff won in

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 83 — #11

Modeling Case-based Legal Reasoning 83

theData-General case despite thousands of disclosures. Clearly, that case is inconsis-
tent with the tenor of the dimension. The dimension indicates that this pro-plaintiff
case is an exception or a counterexample by its position far to the pro-defendant end
of the range. Other legal factors may counteract or “outweigh” the effect of the dis-
closures. In Data-General the disclosures were subject to confidentiality restrictions,
represented in the Outsider-Disclosures-Restricted dimension.

Beside the fact that legal factor weights are sensitive to the particular context, Hypo
did not represent weights for two other reasons. First, judges and attorneys do not
argue about the weight of legal factors in quantitative terms. Second, legal domain
experts do not agree what the weights are, and combining positive and negative
weights numerically obscures the need for arguing about the resolution of competing
legal factors. Chapter 4 presents ways to deal with legal factor weights for purposes
of prediction.

Analogizing and Distinguishing Cases in Hypo’s 3-Ply Arguments
The inputs to Hypo consisted of problem scenarios inputted in terms of an instanti-
ated frame for representing facts of trade secret cases. The input problem is referred
to as the current fact situation (cfs). Hypo’s outputs were a three-ply argument
in English that a plaintiff’s trade secret misappropriation claim should [not] be
successful. The three-play argument comprised:

1. An argument analogizing the cfs to a pro-plaintiff case.
2. An argument distinguishing the cited case from the cfs on behalf of defendant

and citing pro-defendant counterexamples.
3. A rebuttal distinguishing the counterexample cases from the cfs and, where

possible, a hypothetical suggesting facts to strengthen the plaintiff’s argument
in the cfs.

Hypo also made similar three-ply arguments on behalf of the defendant.
Analogizing a cfs and a cited case means stating legally relevant similarities that

give rise to reasons why they should be decided the same way. In Hypo, such similar-
ities are represented as shared dimensions. These dimensions represent legal factors
common to the cfs and cited case. If at least one of these shared dimensions favors the
side making the argument, Hypo considers the fact that the cited case was decided
for that side as potential grounds for an argument for assigning the same outcome to
the cfs.

Distinguishing a cited case is stating legally relevant differences between the cfs
and the cited case, that is, reasons why they should be decided differently. In Hypo,
such differences were represented as certain unshared dimensions: in an argument
for the plaintiff, dimensions in the cfs, but not in the cited case, that favored plaintiff,
and dimensions in the cited case, but not in the cfs, that favored the defendant. These
particular unshared dimensions give rise to reasons for deciding the cases differently.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 84 — #12

84 Computational Models of Legal Reasoning

Counterexamples are cases that evidence the same or similar reasons as the cited
case for deciding in favor of the side making the argument but where the opposite
outcome was reached. Counterexamples make good cases for the opponent to cite
in response.

Let’s illustrate Hypo’s arguments with the facts of a case called Mason v. Jack
Daniels Distillery, 518 So. 2d 130 (Ala. Civ. App. 1987). In 1980 Tony Mason, a restau-
rant owner, developed a recipe to ease a sore throat: Jack Daniel’s whiskey, Triple
Sec, sweet and sour mix, and 7-Up. He promoted the drink, dubbed “Lynchburg
Lemonade” for his restaurant, “Tony Mason’s, Huntsville,” served it in Mason jars,
and sold T-shirts. Mason told the recipe only to his bartenders and instructed them
not to reveal the recipe to others. The drink was only mixed out of the customers’
view. The drink comprised about one-third of the sales of alcoholic drinks. Despite
its extreme popularity, no other establishments had duplicated the drink, but experts
claimed it could easily be duplicated. In 1982, Randle, a sales representative of the
Jack Daniel’s Distillery, visited Mason’s restaurant and drank Lynchburg Lemon-
ade. Mason disclosed part of the recipe to Randle in exchange, Mason claimed,
for a promise that Mason and his band would be used in a sales promotion. Ran-
dle recalled having been under the impression that Mason’s recipe was a “secret
formula.” Randle informed his superiors of the recipe and the drink’s popularity.
A year later, the Distillery began using the recipe to promote the drink in a national
sales campaign. Mason was not invited to participate in the promotion nor did he
receive any other compensation, so he sued the distillery for misappropriating his
secret recipe.

An attorney with some knowledge of trade secret law would be able to identify in
the Mason facts some legal factors that favor the plaintiff and others that favor the
defendant. Plaintiff Mason adopted some security measures, F6 Security-Measures
(P).1 Mason was the only restaurant preparing the Lynchburg Lemonade drink,
F15 Unique-Product (P). The defendant distillery’s sales representative knew that
the information Mason provided was confidential, F21 Knew-Info-Confidential (P).
On the other hand, Mason disclosed the information about mixing Lynchburg
Lemonade in negotiations with the distillery’s agent, F1 Disclosure-in-Negotiations
(D), and the recipe could be learned by reverse engineering the drink, F16 Info-
Reverse-Engineerable (D).

Figure 3.2 shows an example of a 3-Ply Argument that Hypo could generate for
the plaintiff in the Mason case. Hypo would analogize Mason to the pro-defendant
Yokana case, then respond by distinguishing Yokana for the plaintiff and by citing
a pro-plaintiff (trumping) counterexample, the American Precision case, and finally,

1 The Mason case was introduced in Aleven (1997) as an example for the CATO program, discussed
below, to analyze. CATO employed 26 Factors, numbered F1 through F27. (There is no F9.) For
convenience, we will refer to Factors (and the corresponding legal factors) by number. See Table 3.1
for a complete list.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 85 — #13

Modeling Case-based Legal Reasoning 85

rebut by distinguishing the counterexample on behalf of the defendant. A look at
Hypo’s model of argument will explain how such arguments would be generated.

Hypo’s Argument Model
Figure 3.3 shows the cfs (i.e., theMason case), the Yokana case decided for the defen-
dant (D), the American Precision case won by the plaintiff (P), the legal factors that
apply in each case, and the overlap of legal factors across the cases. The intuition
underlying Hypo’s model of argument is conveyed in the Venn diagram.

As illustrated in Figure 3.3, the cfs shares pro-defendant F16 with the pro-
defendant Yokana case. In the Hypo model, this leads to an argument that the cfs
is relevantly similar to (i.e., shares a citable legal factor with) Yokana and should be
decided the same way for defendant (see Figure 3.2, top).

The plaintiff Tony Mason could respond, however, in a number of ways. First, he
could distinguish the Yokana case. It has a pro-defendant legal factor, F10, not shared
in the cfs. In other words, there is a reason to decide Yokana for defendant that does
not apply to the cfs. Similarly, the cfs has pro-plaintiff legal factors, F6, F15, and F21
that are not in the Yokana case. Those are reasons to decide the cfs for plaintiff that
do not apply in the cited case (see Figure 3.2, middle).

Second, Tony Mason could cite a favorable precedent: In the American Precision
case, the plaintiff won where pro-plaintiff F21 applied just as in the cfs.

Third, Mason could use the American Precision case to trump the defendant’s
argument based on Yokana. InAmerican Precision, the plaintiff won despite the appli-
cation of pro-defendant F16. The cfs is even more analogous to American Precision

figure 3.2. Hypo-style three-ply argument for the Mason case (see Ashley, 1990)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 86 — #14

86 Computational Models of Legal Reasoning

figure 3.3. Hypo argument model with Venn diagram (Ashley, 1990)

because they share a set of factors, F16 and F21; Yokana and the cfs share only a
subset of that set, namely F16. In other words, American Precision is a trumping
counterexample to Yokana (see Figure 3.2, middle).

More specifically, a counterexample is a case whose outcome is the opposite of
the cited case and which satisfies an additional constraint as follows. If the set of legal
factors a cited case shares with the cfs is a subset of the set that the counterexample
shares with the cfs, the counterexample is more on point than the cited case and
is called a trumping counterexample. If the counterexample shares the same set of
legal factors with the cfs as the cited case, it is an as-on-point counterexample. If
the counterexample shares a legal factor with the cited case and the cfs, but the
magnitude of the legal factor (the corresponding dimension’s magnitude) is stronger
for the side favored in the cited case, it is a boundary counterexample. It tends to
undermine a conclusion that the dimension favors that side.

Hypo couldmake all of these arguments. This example does not illustrate a bound-
ary counterexample, but if the Mason case had involved disclosures to outsiders
and defendant had relied on Secrets-Disclosed-Outsiders, plaintiff could cite the pro-
plaintiff Data General case with 6,000 disclosees as a boundary counterexample.
(Of course, in the rebuttal, Hypo would distinguish the Data General case for the
defendant by pointing out that there the disclosures to outsiders were restricted.)

Case Retrieval and Ordering in Hypo
Given an input fact situation, Hypo retrieved all cases in its database that shared a
dimension with the cfs. It then ordered the cases in terms of the overlaps of the sets
of legal factors (as represented by dimensions) the cases shared with the cfs. Hypo
organized the cases in a graph structure called a claim lattice by the inclusiveness

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 87 — #15

Modeling Case-based Legal Reasoning 87

figure 3.4. Hypo claim lattice (Ashley, 1990)

of the sets of dimensions they shared with the problem. Figure 3.4 shows the claim
lattice Hypo could construct for the Mason cfs. The cfs is at the root. Each of the
cfs’s immediate descendants shares some subset of its applicable dimensions. Each
of their descendants shares some subset of their set of dimensions shared with the
cfs and so forth. Notice in the claim lattice that American Precision is closer to the
cfs than Yokana reflecting the trumping counterexample relationship illustrated in
Figures 3.2 and 3.3.

The Hypo model illustrates one way to computationally compare cases’ similarity
and relevance. Hypo does not compare cases in terms of the numbers of dimensions
shared with the cfs. Rather, it compares them in terms of the inclusiveness of the sets
of dimensions each case shares with the cfs. In other words, Hypo compares the sets
of legal factors each case shares with the cfs and determines if one case’s set is a subset
of another case’s set. If it is a subset, the former case is less on point than the latter. In
Figure 3.4, for instance, the Digital Development case shares four dimensions with
the cfs compared with American Precision’s two, but that does not make it more on
point. Also, since American Precision’s set of dimensions shared with the cfs is not a
subset of Digital Development’s the two cases are not comparable according to the
Hypo model.

Comparing sets of dimensions makes legal sense. It approximates comparing how
well a case covers the legal strengths and weaknesses in a cfs. Comparing cases in
terms of the number of dimensions shared ignores the semantic differences among
the legal factors.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 88 — #16

88 Computational Models of Legal Reasoning

Two programs extended the Hypo model. CABARET applied dimensions to
reasoning with statutory rules and CATO implemented new argument templates
for downplaying or emphasizing distinctions.

Dimensions of Legal Rule Predicates in CABARET
CABARET, a first successor to Hypo, dealt with a statutory domain, in particular,
a provision of the U.S. IRC dealing with the income tax home office deduc-
tion (Rissland and Skalak, 1991). It employed dimensions to represent stereotypical
fact patterns that strengthened or weakened a claim that a legal rule’s predicate
(e.g., “principal place of business” in the tax code provision) was satisfied.

CABARET integrated two models, one rule-based and the other case-based. The
rule-based model represented legal rules from the relevant IRS provisions and their
ILCs. Given a problem scenario, the rule-based model forward-chained from facts
to confirm goals and backward-chained from desired goals to facts needing to be
shown.

The rules were similar to those in the Waterman program (Section 1.3.1), but with
onemajor difference.Where the rules “ran out” (i.e., no further rules defined a statu-
tory term), the program could resort to Hypo-style case-based reasoning. Dimensions
in CABARETwere associated with legal factors strengthening or weakening an argu-
ment that a statutory term was satisfied. These dimensions indexed cases in which
courts held that the statutory terms were satisfied or not.

Given a problem scenario and a statutory term, the case-based reasoning model
determined which dimensions applied, retrieved cases indexed by those dimensions,
and generated claim lattices like that illustrated in Figure 3.4 for the statutory term
that was subject to argument. The claim lattice organized past cases relevant to that
statutory term according to relevance as measured in the Hypo model.

CABARET integrated both computational models via an agenda mechanism: an
algorithm that could reason about the current state of the analysis and call either the
rule-based reasoning (RBR) or case-based reasoning (CBR) model as appropriate.
The agendamechanism employed a set of heuristic rules to reason about the current
state of analysis. Examples of the control heuristics included:

– Try other: If CBR fails, then switch to RBR (and vice versa).
– Sanity check: Test conclusion of RBR with CBR (and vice versa).
– RBR Near-miss: If all a rule’s antecedents are established but one, use CBR

to broaden application of the rule with respect to the missing antecedent. For
example, use CBR to show that there are cases where the conclusion was true
but the rule did not fire because of the missing antecedent.

– Match statutory concepts: Find cases that failed or succeeded on the same
statutory concepts.

Figure 3.5 shows excerpts of CABARET’s analysis of a real case, Weissman v. IRS,
involving whether a CCNY Philosophy professor’s home office (two rooms and bath)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 89 — #17

Modeling Case-based Legal Reasoning 89

figure 3.5. Example of CABARET’s process for analyzing Weissman v. IRS, 751 F. 2d
512 (2d Cir. 1984) (Rissland and Skalak, 1991)

in his 10-room apartment qualified for a home office tax deduction under section
280A of the IRC. Professor Weissman spent only 20% of his time at the CCNY office
where it was not safe to leave equipment and materials. The IRS challenged his
home office deduction of $1,540 rent and expenses because, among other things, it
was not his “principal place of business” (p-p-b).

Directed by the control heuristics, CABARET’s analysis begins with a case-based
dimensional analysis that turns up a number of most-on-point cases citable for
the taxpayer. Then, a control heuristic leads to a “sanity check” with a rule-based

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 90 — #18

90 Computational Models of Legal Reasoning

analysis, in which the program identifies that the rule for concluding that the
home office was his “principal place of business” (p-p-b) nearly applied: all of its
antecedents were satisfied but one: whether the taxpayer discharges “primary respon-
sibility in home office.” Again, a control rule switches to CBR, finding a case where
the missing antecedent is satisfied, the Drucker case, which it analogizes to the cfs.

CABARET demonstrated that dimensions representing legal factors were useful
techniques for modeling a domain beside trade secret law, showed how to use dimen-
sions representing legal factors in a statutory domain, and applied the dimension and
legal factor-based approach to reasoning about concepts in legal rules.

Factors in CATO
CATO, Hypo’s second successor, simplified the dimensional representation with
Factors (Aleven, 2003). Like Hypo, CATO dealt with trade secret misappropriation
in terms of legal factors, but it did so without using dimensions to represent them.

Instead, it replaced each dimension with a corresponding binary Factor. A Factor
either applies to a scenario or it does not. It does not make use of magnitudes or
ranges, nor does it have associated prerequisites to test if a Factor applied. CATO
employed a more complete list of Factors, shown in Table 3.1, and modeled how
to downplay or emphasize a distinguishing Factor (Aleven, 1997). CATO employed
its enhanced Factors in a computerized instructional environment to help students
learn skills of case-based argument such as distinguishing. As explained inChapter 4,
it also used Factors to predict case outcomes (Aleven, 2003).

CATO added a factor hierarchy, excerpts of which are illustrated in Figure 3.6, a
knowledge scheme for representing reasons why the presence of a Factor mattered
from a legal viewpoint (Aleven, 2003, Fig. 3, p. 192). The factor hierarchy’s reasons
explained why a Factor strengthened (or weakened) a trade secret claim.

Using these reasons, CATO could generate new kinds of legal arguments down-
playing or emphasizing distinctions, arguments that Hypo could not. It could
organize an argument citing multiple cases by issues, grouping together cases that
shared common issues with the cfs even if they did not share the same Factors. In
this way, CATO could draw analogies at a higher level of abstraction.

CATO could also downplay or emphasize distinctions. As illustrated in Figure 3.7,
if a side’s argument cites a particular distinguishing Factor in the cfs, the program
could downplay it by pointing out another Factor in the cited case that mattered for
the same reason. Alternatively, the program could emphasize the distinction by char-
acterizing the difference between the cases more abstractly based on other Factors
with common roots in the factor hierarchy.

Aleven’s algorithms for downplaying and emphasizing interacted with the infor-
mation about Factors represented in the factor hierarchy. Given a Factor-based
distinction between the cfs and a cited case, it traversed the nodes of the factor hierar-
chy upward from the distinguishing Factor to identify a focal abstraction that could
be used to draw an abstract parallel across the cases and could lead to identifying

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C
03”

—
2017/5/29

—
16:32

—
page

91
—

#19

table 3.1. Trade secret Factors (Aleven, 1997)

Factor Meaning Rationale

F1 Disclosure-in-negotiations (D) P disclosed its product information in negotiations with D. P gave his property away.
F2 Bribe-employee (P) D paid P’s former employee to switch employment, apparently in an

attempt to induce the employee to bring P’s information.
D obtained P’s property through improper means.

F3 Employee-sole-developer (D) Employee D was the sole developer of P’s product. D should have property rights in his invention.
F4 Agreed-not-to-disclose (P) D entered into a nondisclosure agreement with P. P takes reasonable steps to protect his property.
F5 Agreement-not-specific (D) The nondisclosure agreement did not specify which information

was to be treated as confidential.
P did not specify in what he claims a property interest.

F6 Security-measures (P) P adopted security measures. P takes reasonable steps to protect his property.
F7 Brought-tools (P) P’s former employee brought product development information to D. D steals P’s property.
F8 Competitive-advantage (P) D’s access to P’s product information saved it time or expense. P’s trade secret is valuable property.
F10 Secrets-disclosed-outsiders (D) P disclosed its product information to outsiders. P gave his property away.
F11 Vertical-knowledge (D) P’s information is about customers and suppliers (which means that it

may be available independently from customers or even in directories).
P cannot have a property interest in its customer’s
business info.

F12 Outsider-disclosures- restricted (P) P’s disclosures to outsiders were subject to confidentiality restrictions. P protects his property.
F13 Noncompetition- agreement (P) P and D entered into a noncompetition agreement. P protected against former employee’s use of

confidential information.
F14 Restricted-materials-used (P) D used materials that were subject to confidentiality restrictions. D used P’s property despite P’s protections.
F15 Unique-product (P) P was the only manufacturer making the product. P’s trade secret is valuable property.
F16 Info-reverse-engineerable (D) P’s product information could be learned by reverse-engineering. P’s property interest is limited in time.
F17 Info-independently-generated (D) D developed its product by independent research. P has no property interest in information D

generated independently.
F18 Identical-products (P) D’s product was identical to P’s. D copied P’s trade secret property.
F19 No-security-measures (D) P did not adopt any security measures. P did not protect his property.
F20 Info-known-to-competitors (D) P’s information was known to competitors. P cannot have property interest in something known.
F21 Knew-info-confidential (P) D knew that P’s information was confidential. D knew p claimed property interest.
F22 Invasive-techniques (P) D used invasive techniques to gain access to P’s information. D used invasive techniques to steal P’s property.
F23 Waiver-of-confidentiality (D) P entered into an agreement waiving confidentiality. P claimed no property interest in trade secret.
F24 Info-obtainable-elsewhere (D) The information could be obtained from publicly available sources. P cannot have property interest in something available from

public sources.
F25 Info-reverse-engineered (D) D discovered P’s information through reverse engineering. P’s property interest is limited by time.
F26 Deception (P) D obtained P’s information through deception. P was cheated of his property
F27 Disclosure-in-public-forum (D) P disclosed its information in a public forum. P gave his property interest in the trade secret away.

91

of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781316761380.003

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Florida, on 03 N
ov 2017 at 09:17:28, subject to the Cam

bridge Core term
s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 92 — #20

92 Computational Models of Legal Reasoning

figure 3.6. CATO Factor hierarchy (Aleven, 1997, 2003)

figure 3.7. CATO argument downplaying/emphasizing distinction (Aleven, 2003)

Factors in the other case that undercut the significance of the distinction. Another
algorithm could emphasize a distinction by finding a focal abstraction in the factor
hierarchy for abstractly contrasting the two cases. It could lead to identifying further
corroborating Factors in one case and contrasting Factors in the other case, with
which to support the distinction’s importance (Aleven, 2003, pp. 202–8).

Aleven evaluated CATO in two ways. First, he assessed its efficacy in teaching
students basic skills of case-based legal argument, as compared to being taught the
same skills by an experienced human instructor. Second, he evaluated the argument
model in terms of how successfully it predicted outcomes of cases, as discussed in
Chapter 4.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 93 — #21

Modeling Case-based Legal Reasoning 93

figure 3.8. GREBE semantic net representation of Vaughn case (Branting, 1991, 1999)

3.3.3. Exemplar-based Explanations

Karl Branting developed a third basic knowledge representation technique, EBEs,
for comparing the similarity of cases, drawing analogies to positive case instances,
and distinguishing negative ones. His Generator of EBEs (GREBE) program
modeled arguments by analogy to past cases using a different kind of extensional
representation scheme: semantic nets (Branting, 1991, 1999).

A semantic net is a graph comprising nodes, which represent concepts (including
both legal concepts and facts), and arcs representing relations between concepts.
Using a semantic net, Branting represented a court’s explanation of a case’s out-
come in terms of criterial facts, the facts the judge deemed important to support its
conclusion that particular ILCs drawn from a statute were satisfied or not. Branting
called these semantic net representations EBEs.

Figure 3.8 shows a sample EBE, the semantic net representation of the Vaughn
case, one of the cases in GREBE’s database. In the Vaughn case, a truck driver was
injured in an accident when driving his motorcycle to a restaurant to eat before his
next run. His boss had directed him to go find something to eat because of a delay
in unloading his truck. The issue was whether Vaughn was injured in the course of
his employ, in which case his employer would be liable (Branting, 1991, p. 810).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 94 — #22

94 Computational Models of Legal Reasoning

GREBE’s knowledge sources included statutory, common law, and commonsense
rules as well as 16 legal precedents, 4 paradigm cases, and 21 hypothetical test cases
represented as EBEs. Each case’s EBE was indexed as a positive or negative example
of the open-textured statutory legal concepts as per the judge’s explanation.

The inputs to GREBE were semantic nets representing the facts of workers’ com-
pensation scenarios. GREBE’s output detailed textual arguments citing legal rules
under the Texas workers’ compensation statute and drawing analogies to precedents
to justify a conclusion that an individual involved in an accident was [not] entitled
to compensation.

To illustrateGREBE’s process of case-based legal reasoning, here is how it handled
the Jarek problem input as a semantic net. A railroad employed Jarek as a porter and
one day directed him to work late. Since Jarek needed to inform his wife that he
would be working late (before the age of cellphones), the Railroad permitted Jarek
to make a special trip home to tell his wife. While walking home, however, Jarek
slipped and was injured. The problem is represented as a semantic network of facts,
most of which are listed in the right-hand column in Figure 3.9.

When input, GREBE tries to prove that Jarek is entitled to workers’ compensation.
Using backward chaining, it attempts to construct a proof based on its statutory rules
setting forth the requirements for a successful workers’ compensation claim. Those
rules, however, do not define all of the statutory requirements in sufficient detail
to complete such a proof. In particular, one of the requirements stipulates that the
employee’s travel must be in-furtherance-of-employment, but there is no rule further
defining that legal concept.

An ill-defined statutory concept, however, may index multiple precedents as pos-
itive or negative examples. GREBE attempts to map the structures of the semantic

figure 3.9. GREBEmatches structure ofVaughn case to Jarek problem (Branting, 1991,
1999)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 95 — #23

Modeling Case-based Legal Reasoning 95

net representing the facts of the problem to the structures of each indexed prece-
dent’s EBE. For instance, in-furtherance-of-employment indexes 20 precedents.
GREBE does not know in advance which of these precedents are the most rele-
vant for a given cfs. Consequently, GREBE retrieves each one and tries to match
the Jarek facts to the criterial facts in each case where the trip was held to be
in-furtherance-of-employment [or not].

For instance, among other cases indexed by in-furtherance-of-employment,
GREBE retrieves the Vaughn case whose EBE is shown in Figure 3.8. It tries to
construct a justification that Jarek’s special travel home was in furtherance of his
employment by drawing an analogy to the similar conclusion in the Vaughn case.
In other words, GREBE tries to prove (in-furtherance-of Jarek-special-travel-home
Jarek-employment) by analogy to (in-furtherance-of Vaughn-traveling-to-restaurant2
Vaughn-employment). Operationally, that means GREBE tries to map the structure
of the explanation in the Vaughn EBE (Figure 3.8) to the facts of the Jarek semantic
net. The result of GREBE’s mapping of theVaughn case to the Jarek facts is shown in
Figure 3.9. The criterial facts from the Vaughn case that were successfully matched
to the Jarek facts are shown at the top. The unmatched facts are at the bottom.

In order to assess the quality of amatch,GREBE employed its computationalmea-
sure of similarity of two cases. Branting defined a relevant similarity as a matched
criterial fact and a relevant difference as an unmatched criterial fact. GREBE com-
puted similarity between a source case and a target case as the proportion of criterial
facts matched across the two cases per the total number of criterial facts in the target
case. If this ratio exceeded a threshold value, the cases were deemed to be relevantly
similar.

Incidentally, from a computational viewpoint, mapping semantic net structures
is complex. Think of trying to match fairly elaborate Tinker Toy structures when
blinded; since one cannot see the structure, one has to try matching each node of
one structure to a node of the other and “feel” if each descendant matches. The task
is simplified computationally in that the links in these semantic nets are labeled.
Think of matching Tinker Toy structures with multicolored rods where, at least, one
can “see” what color the rods are and thus focus on matching only parts of structures
involving similarly colored rods. With labeled links, a program will only proceed if
the link labels match, but the task is still computationally complex.

Branting designed a variation of the A* best-first search algorithm that pursued
matching the structures of case explanations in a highly selective and efficient way:
Candidate mappings are pursued only in so far as they lead to a best match.

The A* search algorithm employs two parameters: f(n) estimates the cost to reach
the goal from the current node N and g(n) represents the actual cost of reaching
the current node N from the initial state. Operationally, f(N) is an estimate of the
number of unmatched criterial facts in the best completion of the mapping in N.
g(N) is defined in terms of the proportion of criterial facts in a target case that are
unmatched under the mapping so far to node N. These cost estimates of available

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 96 — #24

96 Computational Models of Legal Reasoning

figure 3.10. In-furtherance-of employment cases retrieved by GREBE for Jarek
problem (Branting, 1991, 1999)

paths to the goal of structurally mapping the most similar cases guided GREBE’s
best-first search algorithm. Having reached some node N in its search, it estimated
the cheapest path through N from the initial node to the goal node (Branting, 1991,
p. 817).

As a result of matching cases indexed by the legal concept in-furtherance-of-
employment, GREBE retrieves the three cases listed in Figure 3.10 and uses them to
construct the arguments by analogy excerpted in Figure 3.11. As perusal of the argu-
ment indicates, GREBEproduced sophisticated legal arguments in natural language
text comparable to those a human might produce.

Evaluating GREBE
In order to substantiate the sufficiency of his CMLR, Branting developed a tech-
nique for empirically evaluating the quality of GREBE’s arguments similar to the
one in Figure 3.11.

Branting compared GREBE’s analysis of a number of workers’ compensation
problems to those prepared by five law student volunteers. Students were asked to
construct the strongest arguments they could for and against the injured person’s
entitlement to compensation. Students took on average 2.77 hours researching the
problem and writing their analyses.

A domain expert in Texas workers’ compensation law graded the students’ and
GREBE’s responses in a blind test. GREBE’s responses were made to look on the
surface as though they had been prepared by a student. The expert was told that all
of the analyses were prepared by law students.

The expert graded the responses for identifying issues, citing statutory rules and
precedents, and the soundness and persuasiveness of the arguments. He assigned the
following grades:

GREBE: 9 C’s, 4 B’s, 4 F’s Avg. 2.0
Students: 12 C’s, 1 B, 5 F’s Avg. 1.78

According to the expert, none of the “students” did really well, but GREBE’s
arguments were better!

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 97 — #25

Modeling Case-based Legal Reasoning 97

figure 3.11. Excerpts ofGREBE’s argument for Jarek problem (see Branting, 1991, 1999)

3.4. teleological models of case-based legal reasoning

Programs like Hypo, CATO, CABARET, and GREBE did not take into account
the purposes and values underlying legal rules. As Don Berman and Carole Hafner
pointed out in their influential critique, these early CBR models could not reason
teleologically.

Berman and Hafner (1993) illustrated teleological reasoning with a series of cases,
drawn from an American law school first-year property course, involving hunters’
property rights in wild prey. This trilogy of examples, Pierson v. Post, 3 Caines R.
(N.Y. 1805) and two English cases, Keeble v. Hickeringill, 103 ER 1127 (1707) and
Young v. Hitchens, 115 ER 228 (1844), has since become a standard example in AI &
Law (see Sections 5.5.2 and 6.6).

The Property Interests in Wild Animal Cases
In the Pierson case, plaintiff Post was hunting foxes on open land. While the plaintiff
pursued a fox on horseback with hunting dogs, the defendant, “well knowing the
fox was so hunted ... did, in the sight of Post, to prevent his catching the same, kill
and carry it off.” The Court ruled for defendant that to recover, the plaintiff had
to have gained possession of the fox by capturing it or mortally wounding it. The
majority reasoned that there was a need for certainty and clear guidelines in order

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 98 — #26

98 Computational Models of Legal Reasoning

to discourage a plague of lawsuits by disgruntled hunters. The dissenter would have
ruled for the plaintiff that the pursuit is enough to convey a property interest in the
fox, reasoning that the law should reward hunters for ridding the land of noxious
foxes.

The plaintiff in the Keeble case owned a pond upon which he placed duck decoys.
The defendant, intending to injure the plaintiff’s livelihood, fired guns to scare away
the ducks. The court found for the plaintiff, even though the plaintiff had neither
wounded nor captured the ducks. The court reasoned that it should protect a man’s
livelihood from intentional interference, except where the interference is from a
competitor acting fairly.

In the Young case, the plaintiff, a commercial fisherman, spread a net of 140 fath-
oms in length across a portion of open ocean. After the plaintiff had closed the net to
a space of few fathoms the defendant went through the opening, spread the defen-
dant’s own net, and caught the fish. On appeal from a judgment for the plaintiff, the
court affirmed recovery for damage to the plaintiff’s net but not for the loss of the
fish. The court reasoned that “it is quite certain that [plaintiff] had not possession”
of the fish.

Need to Model Reasoning with Underlying Values
To illustrate the kind of reasoning with underlying values that the computational
models omitted, Berman and Hafner employed a series of hypotheticals:

1. Suppose the quarry had been a quail. How would the dissenter in Pierson have
held?

2. Suppose violence among sportsmen had resulted. How would the majority
have held in Pierson?

3. Is the situation in Keeble like the case in which “one schoolmaster sets up
a new school to the damage of an ancient school, thereby the scholars are
allured from the old school to come to his new,” a case where the action was
held not to lie? Or suppose “Mr. Hickeringill should lie in the way with his
guns, and fright the boy from going to school . . . sure that schoolmaster might
have action” (Berman and Hafner, 1993).

Legal decision-makers pose hypothetical variations of case facts like these in order
to probe the meaning of a legal rule in light of its underlying values and purposes.
For example, the Justices of the U.S. Supreme Court frequently pose hypotheticals
in oral arguments. The hypothetical in (1) renders inapplicable the purpose to rid
the land of pests. The one in (2) affects the purpose to provide a clear and certain
guideline.

A judge in Keeble posed the hypothetical in (3), presumably to underscore the
purpose of the court’s rule that it should protect an individual’s livelihood from inten-
tional interference, except where the interference is from a competitor acting fairly.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 99 — #27

Modeling Case-based Legal Reasoning 99

figure 3.12. Which argument better accounts for teleological concerns? (Berman and
Hafner, 1993)

As Berman and Hafner put it, “Once the purpose of the rule is understood, anal-
ogous cases setting forth the rights of school masters become more relevant than
cases dealing with foxes.” In other words, the purpose of the rule explains why the
court would decide for the plaintiff in Keeble even though the plaintiff had neither
wounded nor captured the ducks, as would be required by the court in Pierson.

To illustrate their critique of the early case-based reasoning approaches, Berman
and Hafner contrasted two arguments, I and II, as shown in Figure 3.12. The authors
characterize arguments based on factual distinctions, like Argument I, as a kind of
intellectual fencing match. They warn, however, that judges, when studying legal
arguments, do not act as match referees. “[J]udges make rules that significantly affect
human lives and their decisions necessarily embody their views (or prejudices) as to
which rules improve the quality of life in society.” It follows that advocates “in addi-
tion to arguments based on factual distinctions, [should] suggest to judges various
‘policy’ arguments that should affect the decision” (Berman and Hafner, 1993).

As a result, Berman and Hafner argued, computational models of case-based legal
reasoning need to address the question of “Which case should govern and why?” as
exemplified in Argument II. There, the arguers cite rules and underlying purposes
of the rules.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 100 — #28

100 Computational Models of Legal Reasoning

The first-generation CBR systems did not provide a rich-enough vocabulary for
representing arguments about the underlying purposes of rules. Modeling teleologi-
cal reasoning requires a way to represent values and purposes underlying legal rules
and a way to connect them with case facts. It also requires a way to represent the
effects of decisions on underlying values and purposes in concrete fact situations.

3.5. an approach to modeling teleological reasoning

The value-based theory construction approach in Bench-Capon and Sartor (2003)
illustrates one way to take into account the values underlying legal rules.

The work builds on a formal model of legal reasoning with precedents in
Prakken and Sartor (1998). According to that earlier approach, each precedent was
represented as two conflicting rules:

1. pro-plaintiff Factors ⇒ p
2. pro-defendant Factors ⇒ not(p)

Here p represents the decision that plaintiff wins. The first rule states that the
plaintiff wins where all of the Factors in the case favoring the plaintiff are present.
The second rule states that the plaintiff loses where all of the case Factors favoring
the defendant apply.

In addition, the precedent establishes a priority or preference relationship between
the two rules. If the plaintiff actually won the case, then the first rule has priority over
the second; if defendant won, then the second rule has priority over the first. This
approach became the building block of many subsequent developments in logical
models of case-based legal arguments.

In particular, Bench-Capon and Sartor (2003) refined and adapted it for their
model of value-based theory construction. They represented cases as sets of Factors,
as in CATO, but the Factors were interpreted as rules of the form, “if the Factor
applies then decide for the side favored by the Factor.” These rules are defeasible:
“When we come to apply them we will typically find conflicting rules pointing to
differing decisions, so we need a means of resolving such conflicts” (Bench-Capon
and Sartor, 2003).

Rule conflicts are resolved by assigning preferences to the Factor-related rules.
Each Factor is associated with an underlying value. As cases are decided, their
outcomes give rise to more rules that assign preferences to sets of Factors and to
sets of values, preferences that resolve future conflicts.

Figure 3.13 presents an example illustrating the above in the context of the property
rights in wild animal cases. At the top of the figure are three values, Less litigation
(Llit), More productivity (Mprod), and Enjoyment of property rights (Prop), and
four Factors. Each Factor favors a side, plaintiff (P) or defendant (D), giving rise to
defeasible rules including the three rules shown in the figure. In addition, each Fac-
tor serves one of the underlying values, as shown. Finally, the outcome of the Keeble

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 101 — #29

Modeling Case-based Legal Reasoning 101

case gives rise to the preference rule shown in the figure: “if pLiv then P> if pNposs
then D,” meaning that the former rule has preference over the latter.

3.5.1. Teleology in Theory Construction

Let us assume that the goal is to make an argument on behalf of the defendant in the
Young case as cfs based on two precedents shown in the figure, Pierson and Keeble.

In Bench-Capon and Sartor (2003), making an argument with cases is modeled “as
a process of constructing and using a theory.” In this respect, the work is consistent
with Thorne McCarty’s approach in Section 3.3.1. The theories in Bench-Capon’s
and Sartor’s approach are constructed from precedent cases, where the cases are rep-
resented as sets of Factors with which values have been associated and as inference
rules which operationalize them as precedents.

In the Bench-Capon and Sartor model, the theory is constructed not of invariant
mappings across cases but of rules defining preferences across competing Factors
and preferences across the associated competing values. As depicted in Figure 3.13,
to construct an argument involves completing the theory by adding rules (indicated
in the figure by “ADD:”). For instance, the arguer adds a rule, “if pNposs,dLiv then
D,” justifies the new rule with an added rule preference: “ADD: if pNposs, dLiv then
D> if pLiv then P,” and justifies that by adding a value preference, “ADD: Mprod,
Llit>Mprod.” This last new rule means that the values of more productivity and
less litigation outweigh the value of more productivity.

The authors define various theory constructors whose function is to construct
explanations of existing or desired case outcomes. Theory constructors make

figure 3.13. Theory constructed from factor and value preferences (Bench-Capon and
Sartor, 2003)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 102 — #30

102 Computational Models of Legal Reasoning

the additions illustrated in Figure 3.13. The constructors include: Include-case
from the case base, Include-factor, Merge-factors, Rule-broadening, Preferences-
from-case, Rule-preference-from-value-preference, Arbitrary-rule-preference, and
Arbitrary-value-preference.

The authors summarize the completed version of the theory in Figure 3.13 in
the following way. “Now, by merging the primitive rules for pNposs and dLiv, intro-
ducing the value preference [Mprod,Llit>Mprod], and using this to derive the rule
preference [if pNposs,dLiv then D> if pLiv then P], an explanation of Young can be
obtained. . . According to [the theory], Young should be decided for D since in Young
the rule [if pNposs,dLiv then D] is not defeated. This seems, according to Berman
and Hafner, 1993, to be the theory used by the judges in Young” (Bench-Capon and
Sartor, 2003).

Putting aside for a moment the strangeness of this legal theory and of the support-
ing arguments, the example in Figure 3.13 and this summary convey an intuition
about how this kind of value-based theory construction works. The model takes
values into account in constructing a theory and applies the theory to make legal
arguments and predict outcomes of new cases. As suggested in Figure 3.14, the out-
comes of past cases reveal preferences between sets of Factors present in those cases.
Those preferences between sets of Factors, in turn, reveal preferences between sets of
values associated with the Factors. Associated preference rules promote and demote
certain sets of values organizing the values into an abstract order that is determined
by past cases. When a new case is to be decided, given its Factors, theory construc-
tors assemble an explanation which, when completed, can predict and explain the
outcome of the case in a manner consistent with the cases to date.

figure 3.14. Argument as theory construction from factor and value preferences (see
Bench-Capon and Sartor, 2003)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 103 — #31

Modeling Case-based Legal Reasoning 103

How Do Legal Practitioners Reason with Values?
Despite these strengths, for a number of reasons the model of legal reasoning with
values in Bench-Capon and Sartor (2003) does not solve the problems raised by
Berman and Hafner.

First, it is incomplete. There are some holes to be filled. Regarding the example in
Figure 3.13 and the above summary, the authors note, “This explanation does rely on
the introduction of a preference that is arbitrary, in the sense of not being supported
by precedents” (i.e., Mprod, Llit > Mprod). The authors consider “adding a theory
constructor which allows one to introduce preferences for any set of values over its
own proper subsets,” but allow that this may need further refinement.

Second, the model in Bench-Capon and Sartor (2003) produces multiple alterna-
tive theories. The sample theory illustrated in Figure 3.13 is only one version that the
theory constructors can generate given the inputs. This means that the competing
alternatives must be evaluated.

Theories can be compared in terms of consistency, explanatory power, coherence,
and simplicity. Consistency and explanatory power can bemeasured, for instance, in
terms of the number of cases the theory explains. In terms of computational imple-
mentation, however, coherence and simplicity are not very well understood and raise
issues about how to make them operational (but see Section 4.6).

Third, it is not clear whether the kind of theory generated by the model in Bench-
Capon and Sartor (2003) as illustrated in Figure 3.13 would make sense to judges
or that judges make decisions by applying such a theory. Assessing a proposed out-
come for a problem in terms of values is an ethical decision of its own. A judge needs
to consider how the values apply to the problem’s particular facts. It seems odd to
suggest that judges determine preferences among competing values set in past cases
and apply them to new cases. It is more likely that judges consider how the values
apply in the particular circumstances of the problem and resolve any conflicts
accordingly.

Given themodel’s use in Bench-Capon and Sartor (2003) of precedent-based pref-
erence rules for competing factors and values, the model does not appear to address
contextual effects on such preferences. Even if a judge employed value preferences in
past cases as a guide, he/she would still need to compare the problem to the cases in
detail. A judge would want to ensure that applying a value preference is appropriate
in the new factual circumstances.

McCarty’s approach also did not account for how judges use values in legal rea-
soning about the application of a concept or how the values tie into a theory of the
case. Even if the program could find, discover, or use invariants that linked cases into
theories, the program appears not to know why the invariant matters, from a legal
viewpoint, to the question of whether the distribution should be taxable income.
Mrs. Macomber’s proportionate ownership remains constant, but can the program
explain why that is legally significant to the issue? Or does it know why the analogy
across different types of corporate distributions, that they all involve some trade-off

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 104 — #32

104 Computational Models of Legal Reasoning

between risk and return, gives rise to a legal reason for treating them all as taxable
income? It does not appear that Taxman II knows or can manipulate such reasons.

Realistically integrating teleological considerations into a model of legal reason-
ing is a challenge for all of the CBR models. Before one can tackle it adequately,
however, one needs to better understand how legal practitioners take values and
principles into account in reasoning about how to decide problems. Although one
often hears talk of an advocate’s theory of a case, it is less clear what such a theory
looks like and how it is best represented by a computable data structure.

We return to these considerations in Chapter 5 on modeling legal argument.

3.6. design constraints for cognitive computing with case-based
models of legal reasoning

The above examples reveal some design constraints that are relevant for cognitive
computing.

First, modeling reasoning with legal rules and concepts requires modeling argu-
ments for and against applying the rule to a fact situation.

Second, in modeling arguments about whether a legal rule’s concept applies in a
set of facts, cases play a significant role. The arguments focus on relevant similarities
and differences among cases and the fact situation.

Third, teleological considerations including the purposes and values underlying
the rules play a role in defining legally relevant similarities and differences among
cases.

Fourth, in order to be a useful tool, assessing case similarity computationally
requires defining a criterion for legal similarity that programs can actually compute.
The computational models of case-based legal reasoning about legal concepts pre-
sented here define criteria for measuring case similarity and patterns of argument
that are likely useful in retrieving cases to support human problem-solving and in
highlighting how the cases have been used in the past. To some (still rather limited)
extent, these criteria take into account underlying purposes and values in assessing
similarity.

Fifth, the case-based models’ usefulness for cognitive computing depends cru-
cially on the extent to which their knowledge representation techniques can connect
directly with case texts using techniques in Part II. In this respect, the models differ.

Aside from the importance of aligning positive and negative instances of a concept
for substantiating a theory about what the concept means, the model of prototypes
and deformations has not yielded tools for representing cases or computing simi-
larities across a wider field of legal domains and cases. As illustrated in Taxman II,
case-based arguments can be conceptually quite complex, but it is not currently pos-
sible to automatically identify features in cases that are only indirectly referenced or
implied in their texts.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 105 — #33

Modeling Case-based Legal Reasoning 105

The techniques in Hypo, CATO, and CABARET are likely to be useful for
cognitive computing. These include dimensions and Factors, Hypo’s and CATO’s
techniques for comparing case similarity in terms of sets of legal factors shared with
the problem and for generating arguments based on these similarity assessments.
They also include CABARET’s techniques for reasoning about legal rule concepts
and CATO’s techniques for predicting case outcomes (and IBP’s, see Chapter 4).

Factors like CATO’s can be identified automatically in texts with some success.
See the IBP+SMILE program discussed in Chapter 10. As discussed in Chapter 9,
progress has been made in extracting functional information associated with legal
rules, which may help to automatically identify dimensions’ prerequisites. Whether
one can extract detailed functional information associated with a dimensional repre-
sentation of a legal factor such as its focal slot value or magnitude in a case, however,
is still an open question.

EBEs in GREBE would be very useful in assisting human problem-solvers in cog-
nitive computing as would GREBE’s indexing of cases as positive/negative examples
of legal rule concepts. To be useful for cognitive computing, however, the explana-
tions and facts, including criterial facts, would need to be extracted directly from
texts.

GREBE’s structure-mapping techniques and computational relevance measure
have a limitation: they assume that facts are described similarly across cases. For
example, going home to tell one’s wife a message, getting ice water for a crew, or
going to a restaurant for some food may all address a need that otherwise would
negatively affect one’s employment. If GREBE is to successfully map these facts
and relations across cases, however, they must all be expressed in the program’s
(non-textual) case representation language in a way that is structurally and seman-
tically compatible. If not, the structure-mapping from one case to another will not
work.

This may not be a problem where one person who is sensitive to this constraint,
for example, Branting, is representing a relatively small number of cases in one legal
domain. Ensuring consistency of representation will be a major problem, however,
where many case enterers are representing a large number of cases across a number
of legal domains.

Branting employed some techniques to address the need for consistency of case
representation.GREBEused a partialmatch improvement strategy to relax the struc-
tural mapping constraints so that criterial facts that are not identical but semantically
similar can match (Branting, 1991, p. 818).

A subsequent program called SIROCCO records and reuses expert-drawn connec-
tions between abstract normative principles and narratives of case facts and events in
the domain of professional engineering ethics. Its designer, Bruce McLaren, intro-
duced an inexact match algorithm, a controlled vocabulary for representing cases
and a web-based case entry tool with examples and a user’s guide for helping to
achieve consistency of the case representation. As a result, SIROCCO supported

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“C03” — 2017/5/29 — 16:32 — page 106 — #34

106 Computational Models of Legal Reasoning

structure-mapping across a fairly wide range of engineering ethics cases (McLaren,
2003).

It is an empirical question, however, whether the new tools for IE can extract EBEs
from text. Presumably, the need for structure-mapping across explanations in differ-
ent cases’ EBEs, and the premium it places on consistency of representation across
cases, exacerbates the difficulties of extracting detailed, intricate explanations from
legal case texts. As discussed in Chapter 10, it is feasible to extract argument-related
information from case texts, including the roles played by sentences in judges’ argu-
ments about various statutory requirements. Such information is significantly more
coarsely grained than the judges’ detailed explanations of what facts are criterial for
each statutory requirement. We return to this question in Chapter 12.

Extracting information about judges’ discussions of the purposes and values under-
lying rules also presents challenges. To the extent that values are associated a priori
with Factors and legal rules, the extracted Factors and rules would warrant a conclu-
sion that the values apply. To the extent that judges reason about values underlying
rules by posing hypotheticals, those might be extracted too. But it is likely to be very
difficult for a program to extract and understand other aspects of what judges are say-
ing when they consider underlying values unless the judges very explicitly explain
what they mean.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.003
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:17:28, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.003
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 107 — #1

4

Models for Predicting Legal Outcomes

4.1. introduction

Using a database of cases represented as sets of features and outcomes, computer
programs can predict the results of new problems. They do so usually by means of
case-based reasoning (CBR) models or ML algorithms, sometimes combining the
two. This chapter will explain and illustrate both.

The prediction techniques make use of different types of features represented in
prior cases, ranging from names of judges deciding and law firms litigating cases of
different types, to attitudinal information about judges, to historical trends in deci-
sions, to stereotypical fact patterns that strengthen a claim or defense, that is, legal
factors. Such features differ in the extent to which they capture information about
the merits of a case. Judges’ names, law firm names, and type of case, for instance,
patent litigation or product liability, capture no information about the merits of a
particular legal dispute. In contrast, legal factors, as we have seen in Chapter 3,
capture quite a lot of information about the merits. Such features also differ in terms
of the ease with which they can be extracted automatically from the texts of cases.
Judicial and firm names are easy to extract; legal factors can be extracted but it is
considerably harder to do so.

This book focuses on features that tend to capture some information about the
merits of a case and that feasibly can be extracted automatically from case texts. This
chapter explores alternativemethods of using such features to predict case outcomes.

Machine learning techniques use feature frequency information statistically to
“learn” the correspondence between case features and target outcomes. Case-based
techniques are focused more on case comparison and explaining predictions. They
make predictions based on the strengths of competing legal arguments. The tech-
niques vary in the ways in which they can explain their predictions and in the extent
to which their feature representations are compatible with cognitive computing.

107
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 108 — #2

108 Computational Models of Legal Reasoning

Questions this chapter addresses include: How can computer programs learn
to predict case outcomes? What is ML? What are supervised ML and decision
trees? What are the advantages of random forests of decision trees? How does a
CBR approach to prediction differ from ML? Will legal practitioners accept legal
predictions without explanations? How can a program pose and test a prediction
hypothesis? How can such prediction programs be evaluated empirically?

4.2. a nearest neighbor approach to automated
legal prediction

Predicting courts’ decisions has long been a goal of AI & Law research.
As early as 1974, a computer program predicted the outcomes of tax cases involving

a particular issue of capital gains tax (Mackaay and Robillard, 1974, p. 302). By that
time there was already a considerable literature on legal prediction. The tax issue of
interest was whether a gain was a capital gain or ordinary income under Canadian
tax law, that is, was the gain “a mere enhancement of value by realizing a security,
or . . . made in an operation of business in carrying out a scheme of profit making.”

The predictions were based on 64 Canadian capital gains tax cases that had been
represented in terms of 46 binary features (i.e., true or false). Each feature involved
facts that commentators in prior studies had identified as relevant to decisions of
that issue (Mackaay and Robillard, 1974). These features included, for example, that
the “private party is a company,” the “private party had never engaged in real estate
transactions,” “at the time of purchase, [the] private party had another intention than
to resell at a profit,” and “the present transaction is an isolated one” (Mackaay and
Robillard, 1974, p. 327f).

The input to the program was a list of the feature values manually assigned to a
new case. The program outputs a prediction based on the “nearest” existing cases
in a two-dimensional representation of the new case in relation to the existing case
(see Figure 4.1). (Actually, this was a projection down to two dimensions from a
multidimensional vector space representation of the cases with one dimension per
each of the 46 features. Vector space representations are introduced in Section 7.5.2.)

For the MacKaay program, the authors employed the k nearest neighbor or k-NN
algorithm, which compares a problem with cases to base a prediction on those that
are most similar. Basically, one measures the similarity or dissimilarity between the
facts of the cases in terms of somemetric. Then one predicts that a new case will have
the same outcome as its closest neighbors. The metric, Hamming distance, sums
the number of variables for which two cases have different values (see Mackaay and
Robillard, 1974, p. 307). The authors used multidimensional scaling to project 60 of
the cases onto two dimensions as shown in Figure 4.1. In the figure, the focus is on
the relative positions of the points. The physical distance between any pair of points
represents the dissimilarity between the corresponding cases.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 109 — #3

Models for Predicting Legal Outcomes 109

figure 4.1. Projection of capital gains tax cases onto two dimensions (see Mackaay and
Robillard, 1974)

The “new” case with unknown outcome (white circle) is located among its k= 5
nearest neighbors (dashed circle). The nearest neighbor algorithm predicts “con,”
the same outcome as three of the five nearest neighbors. Using such a projection for
purposes of legal prediction is more equivocal. For instance, the new case is quite
near a con case, but appears at the edge of a region of pro cases. One can easily
imagine a counterargument that the nearby con case is an exception or a mistake
and that the outcome of the new case should be “pro.”

4.3. introduction to supervised machine learning

Another AI & Law approach to prediction, ML, employs algorithms that learn from
data and use what they have learned to make predictions (see Kohavi and Provost,
1998; Bishop, 2006). They employ statistical means to induce a prediction model (or
function) from a dataset that can be used to predict an outcome for a new case.

A kind of ML that has been applied to predict legal outcomes is supervised ML.
Since it involves inferring a classification model (or function) from labeled training
data, the ML is referred to as supervised (see Mohri et al., 2012).

The training data comprise a set of examples that have been assigned outcomes.
Each example is a pair consisting of an input object (often a vector of feature values)
and a desired output value. The learning algorithm needs to generalize from the
training data to unseen situations.

The supervised learning algorithm analyzes the training data and infers a function
or model, which ideally can be used to classify new, unseen instances. The model

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 110 — #4

110 Computational Models of Legal Reasoning

may, for example, be embodied in statistically computed feature weights or in a set
of rules mechanically induced from the training data. Given a new instance, the
model is applied to predict an outcome.

4.3.1. Machine Learning Algorithms: Decision Trees

A variety of algorithms have been developed for supervised learning, including deci-
sion trees, also known as classification trees (see Quinlan, 1986). For a given classifier
and set of training data, a decision tree learns a set of questions for determining if
a new instance is a positive instance of the classifier. Each question is a test: if the
weight of a particular feature is less than a threshold value, branch oneway, otherwise
branch the other way.

The example in Figure 4.2 illustrates how to induce a tree for deciding whether
to release a defendant on bail from a small set of instances of past bail decisions.
The questions in this simple example are answered yes-or-no; no thresholds are
employed. The rule is constructed using the C4.5 algorithm to build the decision
tree (Quinlan, 2004). The algorithm chooses one attribute to divide the instances
according to the outcome of the related question, such as “Involved drugs?” At C0,
the algorithm chooses drugs= yes to split the instances into {2/n, 4/n, 5/n, 6/n} at
C1 and {1/y, 3/y, 7/n} at C2. Since C2 has instances with mixed results, it is split
next; selecting weapon=no, yields {1/y} at C3 and {3/y, 7/n} at C4. By select-
ing prior-record=no, C4 in turn is split into C5 with {3/y} and C6 with {7/n}.

figure 4.2. Bail decisions data (a) from which decision tree is constructed (b)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 111 — #5

Models for Predicting Legal Outcomes 111

The algorithm stops when the Ci all have the same result or some other termination
criterion such as a depth limit is met.

Decision trees make it relatively easy for humans to interpret what the C4.5 algo-
rithm has learned. By following the root of the resulting decision tree to each leaf
node, a set of rules for predicting bail decisions can be generated:

IF drugs= yes THEN bail=no

IF drugs=no AND weapon=no THEN bail= yes

IF drugs=no AND weapon= yes AND prior-record=no THEN bail= yes

IF drugs=no AND weapon= yes AND prior-record= yes THEN bail=no

Other ML models induce rules directly that humans can inspect and understand.
On the other hand, since an ML algorithm learns rules based on statistical regu-

larities that may surprise humans, its rules may not necessarily seem reasonable to
humans. ML predictions are data-driven. Sometimes the data contain features that,
for spurious reasons such as coincidence or biased selection, happen to be associated
with the outcomes of cases in a particular collection. Although themachine-induced
rules may lead to accurate predictions, they do not refer to human expertise and
may not be as intelligible to humans as an expert’s manually constructed rules.
Since the rules the ML algorithm infers do not necessarily reflect explicit legal
knowledge or expertise, they may not correspond to a human expert’s criteria of
reasonableness.

One goal is for a decision tree algorithm to determine themost efficient sequences
of questions for dividing the training instances into a set of positive instances and a set
of negative instances. Information theoretic criteria enable the algorithm to choose
the features for dividing up the instances most efficiently. C4.5 uses the criteria
to minimize the expected number of questions to be asked by ordering the ques-
tions and, where the questions involve quantities, choosing the most discriminative
thresholds for splitting the “yes” instances from the “no” instances.

4.4. predicting supreme court outcomes

Predicting the behavior of the Supreme Court of the United States has been
especially prized, not only in AI & Law but also in political science research.

In Katz et al. (2014), the goal is to learn and construct a prediction function to
evaluate a future case and predict its outcome, either to affirm or to reverse. The
system uses vote predictions for individual justices to forecast overall Court decisions.

The inputs to the system are Supreme Court cases represented as lists of feature
values, which are described later. The system outputs a binary classification: Will a
justice/the whole Court affirm or reverse the lower court’s judgment?

The approach is intended to mimic how a Supreme Court expert would make
his/her own predictions or forecasts. The system’s predictions are based on a matrix

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 112 — #6

112 Computational Models of Legal Reasoning

figure 4.3. Example features from Supreme Court database [S], the Segal–Cover
Scores [SC], and feature engineering [FE] (Katz et al., 2014)

of observable prior data from “The Supreme Court Database” (Spaeth et al., 2013)
and related sources. Each prediction is based on all previous decisions for that justice,
the Court, and all previous cases.

4.4.1. Features for Predicting Supreme Court Outcomes

The Supreme Court Database records the features of cases, justices, and trends
on which the predictions are based as summarized in Figure 4.3 (Spaeth et al.,
2013). Case Information includes case source circuit, law type, lower court disagree-
ment, issue area, and jurisdictional basis. Justice andCourt Background Information
consists of justice, justice gender, if the chief, and appointing president’s party.
Trends comprise current and overall historic Supreme Court trends, lower court
trends, individual Supreme Court justice trends, and differences in trends. The
authors in Katz et al. (2014) engineered some of the features from other information
(marked FE).

4.4.2. Applying Supervised Machine Learning to SCOTUS Data

The researchers applied supervised ML methods to this feature data and, in particu-
lar, Random Forests of Decision Trees (RFDT), a more sophisticated version of the
single decision tree approach illustrated in Figure 4.2 (Katz et al., 2014, pp. 3–4).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 113 — #7

Models for Predicting Legal Outcomes 113

RFDT replaces a single decision tree with ensembles or random forests of deci-
sion trees in order to achieve greater diversity of sources in prediction. “Ensemble”
methods generate a number of diverse trees and average across an entire forest.
Random forests grow smaller trees and help to prevent the model from overfitting
the data.

Overfitting occurs when an ML model has so many extra terms that it fits the
random variations in data rather than real patterns (see NIST/SEMATECH, 2016).
In effect, the model “memorizes” the particular training data rather than “learns” a
generalization from it. Such a model will fail when making predictions about new
data; it has not learned a generalized classifier from the training data that it can apply
to new data.

Some ML models are especially prone to overfitting, including decision trees,
which almost always overfit the data. Combining the smaller trees of a randomized
forest of decision trees protects against overfitting better than a single complex tree.

Other techniques are applied to reduce the variance of predictive estimators. The
variance is a measure of how spread out their predictions are from the mean. For
example, in the nodes of extremely randomized trees (ERT) the positive and negative
instances are split using a random subset of candidate features. Instead of selecting
the most discriminative thresholds, thresholds are drawn at random for each candi-
date feature. The best of these thresholds is then picked as the splitting rule (Katz
et al., 2014, p. 5).

In overview, the prediction method in Katz et al. (2014) works as follows: Given
data up to the last case decided before the target case (the n – 1st case), the method
applies the latest instantiation of the ERT ensemble. That is, for each justice, it passes
the justice, case, and overall court level features for the current case through the set
of tests in the latest set of ERT, and outputs a prediction for each justice. Then, the
algorithm combines the set of justice level forecasts into a case level prediction using
the majority rule.

4.4.3. Evaluating the Machine Learning Method

Machine learning programs are empirically evaluated to assess how well they can
predict outcomes of new instances. A standard procedure for evaluating a ML pro-
gram is a k-fold cross validation (Kohavi, 1995). The data is divided into k subsets or
“folds.” In each of k rounds, a different one of the k subsets is reserved as the test set.
The ML model is trained using the k − 1 subsets as the training set. The results are
averaged over the k rounds yielding a measure of the accuracy of the predictions.
(Katz et al., 2014) employed 10-fold cross validation.

In k-fold cross validation, the training and test sets are disjoint, and each element
in the data set is used exactly once as a test instance. The setup ensures that when
an element is used as a test instance, the classifier has been retrained with a training
set from which that element has been excluded.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 114 — #8

114 Computational Models of Legal Reasoning

4.4.4. Machine Learning Evaluation Measures and Results

The predictive performance of ML algorithms is often measured in terms of preci-
sion, recall, the F1-score, and accuracy. Each of these measures can be defined in
terms of the concepts of true or false negative and positive instances:

True Negatives (TN): total number of negative cases that were predicted negative

True Positives (TP): total number of positive cases that were predicted positive

False Negatives (FN): total number of positive cases that were predicted negative

False Positives (FP): total number of negative cases that were predicted positive

Given the concepts of true or false negatives and positives, the primary ML
evaluation measures are defined as follows:

Accuracy (A): the ratio of correct case predictions over all case predictions. (TN+

TP)/(TN + TP+ FN+ FP)

Precision (P): the ratio of the number of positive case predictions that are correct
over the total number of positive case predictions. (TP)/(TP+ FP)

Recall (R): the ratio of positive case predictions that are correct over the number
of cases that were positive. (TP)/(TP+ FN)

F1-score or F1-measure: the harmonic mean of precision and recall where both
measures are treated as equally important. 2 ∗ (P ∗ R)/(P + R)

In their evaluation, the ML models of Katz et al. (2014, p. 10) accurately predicted
69.7% of the case outcomes and 70.9% of the individual Justice outcomes over a
60-year period. By comparison, in a contest, human legal experts accurately pre-
dicted 59% of the case outcomes and 67.9% of the Justices’ votes (Katz et al., 2014,
p. 4). While the model’s performance level is not dramatically better than that
achieved in prior research by other ML models, the Katz–Bommarito model makes
accurate predictions for all of the nine Justices for any year in the time period and
avoids overfitting the data.

Interestingly, the most predictive features (72% of the predictive power) com-
prised behavioral trends, including the voting behavior of various justices, and
differences in these behavioral trends, in particular, general and issue-specific dif-
ferences between individual justices and the balance of the Court and ideological
differences between the SupremeCourt and lower courts. Less influential predictive
features included individual case features (23% of predictive power) and justice and
court level background information (4.4%) (Katz et al., 2014, p. 13).

4.5. predicting outcomes with case-based arguments

The nearest neighbor approach applied in the capital gains tax predictor is a kind of
CBR; it compares cases in terms of a distance measure but does not generate expla-
nations or consider domain arguments. In an alternativeCBR approach to predicting

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 115 — #9

Models for Predicting Legal Outcomes 115

outcomes of legal cases, comparing a current case to past cases suggests a hypothesis
for predicting the same outcome as that of the most similar cases, where the predic-
tion can be explained and justified with domain arguments and tested in light of the
explanations.

4.5.1. Prediction with CATO

Vincent Aleven introduced argument-based prediction as a way of evaluating his
CATO program (see Section 3.3.2). “How well a program predicts the outcome of
cases, based on its arguments or judgments of case relevance . . .would inspire confi-
dence that the arguments made by the program are good arguments that have some
relation to the reality of legal reasoning” (Aleven, 2003, p. 212).

The program applied a simple algorithm for predicting an outcome:

1. Given a problem, retrieve cases according to a given relevance criterion.
2. If there are relevant cases, and all had the same outcome, predict that side will

win; otherwise abstain.

CATO applied several different types of relevance criteria. Its factor hierarchy
and arguments emphasizing or downplaying distinctions provided new criteria for
selecting the best cases on which to base predictions (Aleven, 2003, pp. 201, 203, 208).
Aleven compared seven criteria including a Hypo-type baseline (BUC) that bases
the prediction on the best untrumped cases. These are the most-on-point citable
cases with no trumping counterexamples. Three criteria made predictions based on
certain citable or best untrumped cases that have no distinctions from the current
case. The final three criteria made predictions based on such cases that have no
significant distinctions from the current case.

In other words, all of these predictive criteria involved different variations of the
Hypo/CATO models of case-based arguments. The latter three criteria differ from
the former in that they employed knowledge represented in the CATO factor hierar-
chy to determine if the distinctions are significant, that is, not subject to downplaying.

In an evaluation with a database of 184 trade secrets cases, the best-performing pre-
dictive method was the one called NoSignDist/BUC: It made predictions based on
citable cases, without significant distinctions, that are most on point and untrumped
by citable cases with no significant distinctions (Aleven, 2003, p. 214). It abstained
on 11% of the cases and for the remaining cases, its predictions were 88% accurate.
Its use of the knowledge represented in the factor hierarchy to identify significant
distinctions led to an improvement over the Hypo-type BUC baseline that was statis-
tically significant (Aleven, 2003, p. 150). We return briefly to the evaluation of these
two prediction methods below.

4.5.2. Issue-based Prediction

The Issue-based Prediction (IBP) program applied a hypothesis-testing algorithm
that managed to improve upon CATO’s prediction results while using the same

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 116 — #10

116 Computational Models of Legal Reasoning

figure 4.4. IBP domain model (Ashley and Brüninghaus, 2006)

Factor representation of trade secret law (Ashley and Brüninghaus, 2006). Instead
of CATO’s factor hierarchy, IBP employed a different domain model of why legal
factors matter: a graph of trade secret law issues that semantically interconnected
factors.

IBP’s domain model, shown in Figure 4.4, identifies logical requirements
of a claim for trade secret misappropriation (Trade-Secret-Misappropriation) in
terms of the conjunction of two higher-level issues (Info-Trade-Secret and Info-
Misappropriated). Each of these in turn involves sub-issues in leaf nodes, two
for Info-Trade-Secret (Information-Valuable and Maintain-Secrecy) and three for
Info-Misappropriated: either Info-Used and Confidential-Relationship or Improper-
Means.

The IBP model is based on, and is an interpretation of, the rules laid out in the
Restatement (First) of Torts, section 757 and the Uniform Trade Secrets Act, which
state in part:

“Trade secret” means information . . . that:
(i) derives independent economic value . . . from not being generally known to, and
not being readily ascertainable by proper means . . . and
(ii) is the subject of efforts that are reasonable under the circumstances to maintain
its secrecy.

One who discloses or uses another’s trade secret, without a privilege to do so, is
liable to the other if
(a) he discovered the secret by improper means, or
(b) his disclosure or use constitutes a breach of confidence.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 117 — #11

Models for Predicting Legal Outcomes 117

figure 4.5. IBP algorithm (Ashley and Brüninghaus, 2009)

Each leaf-node sub-issue is an intermediate legal concept, an open-textured legal
term. In the IBP model, each of these sub-issues is related to a set of legal factors that
are semantically related to that issue and that may favor the trade-secret-claimant,
plaintiff (P), or the defendant (D). As in CATO (and Hypo), these factors index
cases in the database that are examples of the factors’ application.

4.5.3. IBP’s Prediction Algorithm

The input to IBP is a cfs represented as a set of CATO Factors that apply to the cfs
facts. IBP’s algorithm proceeds as shown in Figure 4.5. IBP identifies the issues that
apply in the cfs based on the input Factors and the associated issues in the domain
model. For each applicable issue, it determines the favored party (plaintiff trade
secret claimant or defendant). If all of the issue-related Factors favor the same side, it
returns that side as its prediction for that issue. Otherwise, it attempts to retrieve cases
in the database indexed by all of the Factors related to that issue. If it finds such cases,
it determines which side the majority of cases favors, poses the hypothesis that the
majority side should win, and attempts to “explain away” any of the counterexam-
ples. If it succeeds in explaining away the counterexamples, it predicts the majority
side should win that issue. Otherwise, it abstains. If it cannot find cases indexed by
all the cfs issue-related Factors, it relaxes the query incrementally by deleting Factors
from the requirements and, thus, may attempt to test a more general hypothesis.

In “explaining away” counterexamples, IBP seeks to distinguish a counterexam-
ple from the cfs and find an alternative Factor-based explanation of the result in
the counterexample. IBP’s attempt to explain away a counterexample will fail if

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 118 — #12

118 Computational Models of Legal Reasoning

figure 4.6. Example of IBP’s prediction for MBL case

the counterexample and cfs share any “knockout Factors” (KO-Factors) favoring the
result in the counterexample.

The definition of KO-Factor includes a semantic component and a statistical
weight. A KO-Factor is defined as a Factor representing behavior paradigmatically
proscribed or encouraged under trade secret law and for which the probability that
a side wins when the Factor applies is at least 80% greater than the baseline proba-
bility of the side’s winning. This probability is calculated as the ratio of the number
of cases in the collection where the Factor applies and the side won divided by the
number of cases in the collection where the Factor applies. The baseline probability
is calculated as the number of cases where the side won divided by the number of
cases in the collection. IBP’s list of KO-Factors included: F8 Competitive-Advantage
(P) (defendant saved development time and money by using plaintiff’s information),
F17 Info-Independently-Generated (D), F19 No-Security-Measures (D), F20 Info-
Known-to-Competitors (D), F26 Deception (P), F27 Disclosure-In-Public-Forum
(D) (Ashley and Brüninghaus, 2009).

Figure 4.6 illustrates IBP’s analysis, prediction, and explanation for a real case,
MBL (USA) Corp. v. Diekman, 112 Ill.App.3d 229, 445 N.E.2d 418 (1983). The case
is input to IBP as a list of Factors. IBP breaks the case into (here three) issues based
on the association of Factors and issues in the domain model, poses a prediction
hypothesis, and tests it against the cases in the database that deal with that issue.Here,
the initial attempts to retrieve cases with all the issue-related Factors of the Security-
Measures issue failed, so the program broadened the query by dropping some Factors

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 119 — #13

Models for Predicting Legal Outcomes 119

figure 4.7. IBP vs. other prediction methods: results (Ashley and Brüninghaus, 2009)

until it returned some cases. On the basis of these, it posed the hypothesis that the
plaintiff should win as in three of the four cases. In testing the hypothesis, it then tried
to explain away the pro-defendant counterexample (theCMI case) but failed and had
to abstain on that issue. Based on the domain model, however, the pro-defendant
prediction on Info-Valuable and, thus, on the existence of a trade secret (Info-Trade-
Secret) leads it to predict the defendant will win overall, which was correct.

4.5.4. Evaluating IBP’s Predictions

IBP was evaluated in a leave-one-out (LOO) cross-validation experiment with a
database of 186 trade secret decisions (including 148 cases from the CATO database).
The researchers compared IBP’s predictions with a variety of other algorithms,
including two based on CATO, two nearest neighbor approaches, three general
purpose ML models/algorithms, two versions of IBP, and a baseline.

The two CATO prediction methods were the same as in the CATO evaluation
(Section 4.5.1), namely NoSignDist/BUC and the BUC baseline. (For convenience,
Figure 4.7 refers to these as CATO and HYPO, respectively.) These two prediction
approaches employ case-based argument-related information, legal factors, and the
significance of distinctions based on the factor hierarchy.

The two nearest neighbor approaches, Nearest Neighbor and KNN+Noise, are
alternative case-based algorithms that do not employ case-based argument-related
information (see Section 4.2).

The three general purpose ML models/algorithms included Decision Tree (see
Section 4.3.1), Naïve Bayes (explained in Section 10.3.3), and two supervised ML
programs (Tree→Rules and Rule Learner) that induced rules from the training set of
cases (see Section 4.3).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 120 — #14

120 Computational Models of Legal Reasoning

The two versions of IBP were included in order to determine the effect of “turning
off” or ablating the IBP model’s two different knowledge sources: legal issues and
cases. IBP-No-Issues based its predictions only on relevant cases and ignored the legal
issues. IBP-Model based its predictions only on relevant legal issues and ignored the
cases.

Finally, the majority-class baseline predicts the majority class no matter what the
facts of the new problem are. In the CATO data set, the majority of cases favored
the plaintiff.

Figure 4.7 illustrates the results. IBP did best with an accuracy of 91.8%.1 IBP’s
hypothesis-testing approach to prediction outperformed that of the case-based argu-
ment and nearest neighbor approaches. It also outperformed the general purpose
ML models/algorithms and the baseline.

With respect to the ablation studies, using knowledge about issues to focus
hypothesis-testing with precedents on the issue-related conflicts led to better pre-
diction (IBP vs. IBP-No-Issues). Knowledge about issues, however, did not by itself
lead to a strong predictive model; its role in guiding hypothesis-testing with prece-
dents is important (IBP vs. IBP-Model). Comparing cases by using knowledge about
issues, as implicit in the CATO factor hierarchy’s reasons why a legal factor matters,
led to better prediction (CATO vs. HYPO). Finally, using knowledge about issues to
focus hypothesis-testing with precedents on the issue-related conflicts rather than to
improve case comparison led to better prediction (IBP vs. CATO).

Beside achieving accurate predictions, another important aspect of prediction in
the legal domain is an ability to provide a meaningful explanation of the prediction.

[T]here is value in the explanations that lawyers give to their clients about why they
are proposing the course of action they are proposing, just as there is value in judges
explaining the results they reach . . . [Clients and litigants] will lose this opportunity
if all they are given is a computerized prediction. (Remus and Levy, 2015, p. 64)

Unlike most of the ML approaches and the nearest neighbor algorithms, IBP gen-
erates an explanation of its prediction that is intelligible to legal professionals (see
Figure 4.6). Explaining a prediction in terms of testing a hypothesis is intuitively
accessible to attorneys. In contrast, explaining a prediction in terms of machine-
induced rules that often do not take expert legal knowledge into account or in terms
of statistically induced feature weights is probably much harder for legal profession-
als to understand. “Like Big Data applications generally, most [prediction] programs
give a user results without showing the precise combination of factors that produced
those results” (Remus and Levy, 2015, p. 62).

1 A recent experiment compared IBP’s predictions on the subset of cases with competing Factors with
those of theValue Judgment-based Argumentative Prediction (VJAP) program, whose argumentmodel
accounts for trade-offs in decisions’ effects on values (see Section 5.7).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 121 — #15

Models for Predicting Legal Outcomes 121

figure 4.8. Excerpts from a theory learned by AGATHA with Mason case as cfs
(Chorley and Bench-Capon, 2005a)

4.6. prediction with underlying values

Bench-Capon and his students have implemented prediction based on theories con-
structed with past cases whose facts are represented with expert-supplied legal factors
associated with underlying values.

The AGATHA program automates the process of constructing theories from cases
as described in Bench-Capon and Sartor (2003). As discussed in Section 3.5.1, these
theories are induced from precedents and reflect preference rules among conflicting
values and among conflicting factors. A search algorithm applies theory construction
moves to branch open a tree representing a theory. The moves include countering
with a contrary case, distinguishing, and analogizing.

Figure 4.8 shows excerpts of a theory that AGATHA constructed in analyzing
the Mason case (see Section 3.3.2). At the top are the values (and their abbrevi-
ations) that, the authors posited, underlie the domain of trade secret regulation.
These include values that explicit confidentiality agreements should be made and
enforced (CA) and that a person should be allowed to develop a product using legit-
imate means (LM). AGATHA learned the value preferences shown in the middle
of the figure. According to the two first value preferences, CA is preferred to LM;

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 122 — #16

122 Computational Models of Legal Reasoning

the third indicates that LM is preferred over RE, a value that a person with a secret
should take reasonable efforts to protect. In other words, “a confidentiality restriction
is a strong point for the plaintiff [especially] when supported by some other factor.”
In addition, “development through legitimate means, especially when coupled with
laxity on the part of the plaintiff, favours the defendant” (Chorley and Bench-Capon,
2005a, p. 53).

As suggested in Figure 3.14, these value preferences are revealed by various rule
preferences that AGATHA induces from the cases. Three of the rule preferences
are shown at the bottom of the figure. Each rule preference shows a set of legal
factors for one side that are preferred over a set of factors for the opposing side and
the precedent on which the rule preference is based. The rule preferences based
on the Mineral Deposits Two and Technicon cases support the preference of CA
over LM. Factors F4 Agreed-Not-To-Disclose (P), F21 Knew-info-confidential (P),
and F14 Restricted-materials-used (P) are associated with the value CA, Factor F16
Info-reverse-engineerable (D) supports LM, and Factor F6 Security-measures (P)
supports RE.

In Section 3.5.1, it was noted that the Bench-Capon–Sartor approach generates
multiple theories. AGATHA addresses that problem to a substantial extent in an
ingenious way. It uses a heuristic search algorithm to construct the best theories.
The algorithm applies theory construction moves to branch open trees representing
the theories. It assesses the theories in terms of their simplicity, explanatory power,
depth of tree representing the theory, and degree of completion. It can then select
the best trees according to these assessments.

Chorley and Bench-Capon (2005a) have operationalized these theory evaluation
criteria in quantitative terms. Simplicity is measured in terms of the number of pref-
erence rules in the theory. Explanatory power is assessed by applying the theory to
cases and scoring its performance in terms of the number of cases it predicts cor-
rectly, incorrectly, or for which it abstains. Explanatory power is assessed twice, once
using only the factors in the theory and again with all factors. The depth of tree is
the number of levels in the tree representing the theory. Finally, completeness is
assessed in terms of whether there are additional theory construction moves that
could be performed.

For each theory, these measures are combined into an evaluation number, which
gives “a value with which to compare the theories based on how well they explain
the background, [and] their structure . . . They can be used to . . . guide a heuristic
search” (Chorley and Bench-Capon, 2005a, p. 48).

AGATHA uses the A* heuristic search algorithm to construct the best theories.
Recall that GREBE also employed A* search for constructing mappings to the most
analogous cases (Section 3.3.3). For f(n), the estimate of the cost to reach the goal
from the current node value for each theory, AGATHA made a calculation based on
the theory’s evaluation number. For g(n), the actual cost of reaching the current

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 123 — #17

Models for Predicting Legal Outcomes 123

node from the initial state, it employed the cost of making the next move.2 For
making this calculation, each of the theory construction moves had an associated
cost reflecting its desirability. The authors ranked the moves from low to high cost
as follows: counter with case, distinguish with case, distinguish problem, distinguish
with arbitrary preference, analogize case (Chorley and Bench-Capon, 2005a, p. 48).

Using the theories, AGATHA generated predictions comparable in accuracy to
IBP’s for a subset of the CATO case base (Chorley and Bench-Capon, 2005a,b,c).
Moreover, it can explain the predictions in light of the best theory that it induced
from precedents taking value preferences into account.

On the other hand, although AGATHA makes use of value preferences, it is not
clear that the explanations it generates with the induced rules would make sense
to attorneys. The program cites precedents for preference rules, but it is not clear
whether it explains its predictions in terms of arguments analogizing the facts and
trade-offs contained in the precedents to the circumstances of the cfs. Nor did the
program use ILCs in legal rules in a manner consistent with legal practice. The
constructed theories do not refer to issues drawn from relevant statutory texts or
legal rules, such as the Uniform Trade Secret Act or the Restatement (First) of Torts,
section 757, the provisions of which IBP’s Domain Model is an interpretation.

Finally, it is not clear if AGATHA uses values in the same way that attorneys
do. See the critique in Section 3.5.1 and an alternative approach in Section 5.7 to
incorporating arguments and values in predicting outcomes.

4.7. prediction based on litigation participants and behavior

The IBP and AGATHA approaches focus on features associated directly with the
merits of a case: the legal factors that are most influential in determining the out-
come of cases. In contrast, the SCOTUS prediction work described earlier focuses
on features not directly associated with a claim’s merits, namely issue areas, identities
of justices, and historical trends.

Researchers at Lex Machina and Stanford University have adopted and extended
the latter approach (Surdeanu et al., 2011). They developed techniques for predicting
outcomes of patent claims based on a corpus of all intellectual property (IP) lawsuits
in an eight-year period. Two IP experts annotated the cases as to their outcomes and
an IP attorney reviewed the outcomes and determined the final annotations. They
focused on patent infringement cases that had not been settled, that is, a court had
decided either in favor of the patent owner or the alleged infringer.

Like the SCOTUS project, the researchers treated prediction as a binary classifi-
cation task for a statistical learning model. Past cases were represented in terms of
2 Since, in this theory construction application, it does not matter how many moves are required to

produce the theory, the cost of the history of moves to reach the current node was not included in g(n)
as would usually be the case in A* search (Chorley and Bench-Capon, 2005a, p. 48).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 124 — #18

124 Computational Models of Legal Reasoning

“the past behavior of all the litigation entities involved in a case,” including parties
in the lawsuit, their attorneys and law firms, the judges assigned to the case, and the
districts where the complaints were filed. For each of these participants, the behavior
was modeled with four types of features:

– a unique identifier,
– past win rates of the (non-judicial or district) participant,
– judge and district bias, and
– counts of participation in past cases in any role.

Since the ways in which any given participant is identified in past cases may vary,
such as different formulations of a law firm’s name, the researchers developed an
entity resolution component. It clusters the alternative formulations or mentions of
participants’ names in the texts of the various cases and resolves each cluster into a
unique identifier. The win rates are the percentage of past cases won by the side of
the corresponding participant. Bias is computed as the percentage of cases assigned
to the judge or district that a plaintiff won. Participation counts are the number of
cases in which the entity was a participant.

To generate predictions based on these features, the researchers employed statis-
tical relational learning models (logistic regression, explained in Chapter 10, and
conditional random fields, an advanced technique designed to take account of con-
current cases that share information such as the same corporate plaintiff). Their
best model accurately predicted the outcomes of 64% of the cases and performed
substantially better than the majority-class baseline (Surdeanu et al., 2011).

Interestingly, themodel achieved this level of accuracy in predicting the outcomes
of patent infringement cases even though it does not directly take into account any
features concerning the legal merits of a case. For example, none of the features
represents “the strength of the patents asserted” or “the similarity of the defendant’s
manufacturing technology to the patent’s technology” (Surdeanu et al., 2011).

In post-hoc ablation experiments, the researchers determined that the identity of
the judge and of the plaintiff’s law firm made the most significant contributions
to predictive accuracy, followed by significant contributions from defendant’s iden-
tity, district, defendant’s law firm, and defendant’s attorney (in decreasing order of
magnitude).

In other words, the litigation participant-and-behavior features appear to cap-
ture some aspects of the merits of a case indirectly. This is especially significant in
that these features can fairly easily be extracted automatically from the cases in the
corpus.

Nevertheless, text analytics are making it feasible to extract and employ features
that do capture aspects of a case’s merits. Employing features such as legal factors
could both improve predictive performance and enable a program to explain its
predictions in ways that legal professionals can understand. Moreover, employing
merits-based features may act as a sanity check on predictions based on behavioral

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 125 — #19

Models for Predicting Legal Outcomes 125

features and vice versa; a prediction that is strong in terms of one sort of features
but weak on the other suggests the need for human investigation, a good example of
cognitive computing.

4.8. prediction in cognitive computing

Prediction is an important task in the legal field and is likely to be a focus in
developing CCLAs.

As illustrated in the above examples, predictive algorithms depend on features,
and the types of features vary widely across prediction approaches.

It is worth noting that, to the extent ML and case-based argumentation have been
applied to the task of legal prediction, these computational methods have not dis-
covered the features that influence outcomes but instead have learned the weights of
such features. This is true in the SupremeCourt prediction work in Katz et al. (2014),
theCATO, IBP, and AGATHA programs, and the litigation participant-and-behavior
approach of Surdeanu et al. (2011).

In most of the prediction programs, human legal experts have specified the fea-
tures that are likely to influence prediction. Legal expert commentators identified
various features in the capital gains tax program that relate to the merits of the tax
issue. Similarly, a knowledgeable attorney determined the legal factors employed in
CATO, IBP, and AGATHA. The task of discovering such legally significant features
has not been successfully automated or, at least, has not been reported or published.

It is still possible, however, for programs automatically to annotate in case texts
instances of previously discovered features. Indeed, this is a key question about the
role of legal prediction in cognitive computing: to what extent can the features that
predictive models employ be identified automatically in the case texts?

For some of the prediction programs, deciding whether a feature is present is a
fairly direct inference from the textual assertions reported in the case opinion. This
is not true for most of the features employed in the Supreme Court prediction work.
Katz et al. (2014) employ features concerning the type of case, judicial attitudes, and
knowledge-engineered information about historical trends in cases. These features
neither represent detailed information about the facts of a case nor are they extracted
directly from the text of the decision.

For other prediction methods, however, known features can be detected in case
texts. For instance, the input list of legal factors in Figure 4.6 was actually based on
the automated analysis of a brief textual description of the facts of the MBL case.
A program called SMILE identified the factors in the text automatically and passed
them along to IBP. SMILE learned to identify factors in the texts of such factual sum-
maries (albeit not perfectly). The workings of the SMILE part of SMILE+IBP are
explained in Section 10.4. The litigation participant-and-behavior approach of Lex
Machina employs features that also can be extracted from the text of the cases, such

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“c04” — 2017/5/27 — 11:17 — page 126 — #20

126 Computational Models of Legal Reasoning

as participation frequency and win rates of judges, parties, and attorneys, but those
features do not directly address the merits of legal claims (Surdeanu et al., 2011).

Automatically annotating case texts with features that reflect a case’s legal merits,
along with other argument-related information, makes it feasible to apply com-
putational models of prediction and argumentation directly to legal texts. One
could retrieve case decisions from a legal information retrieval system, process their
texts automatically to identify argument-related features as well as participant-and-
behavior features, and use the information to rank the cases more efficiently, to make
predictions more advisedly, and to enable a computer program to assist humans in
legal problem-solving. This will be developed at length in Parts II and III of this
book, but first we examine a final class of computational models of legal argument
that combine making predictions and arguments in new ways and that take into
account the effects on values of proposed decisions.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.004
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:19:10, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.004
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 127 — #1

5

Computational Models of Legal Argument

5.1. introduction

In the last decades, much of the AI & Law research community has focused on devel-
oping comprehensive computational models of legal argumentation (CMLAs).
Researchers have now integrated into these CMLAs a number of the computational
models of legal reasoning presented in the preceding chapters.

An argument model consists of a representation of the elements of an argument
and a specification of its semantics. Argument elements include the argument itself
and, possibly, statements or propositions in the argument, as well as their interrela-
tions, for example as constituents of argument graphs. The argument semantics are
specified through some well-defined process by which the status of the argument
elements can be determined, for example, by inspection of the graph.

Researchers in AI have produced a variety of argument models that differ widely
in the aspects of arguments they represent and in the way they specify the status of
an argument.

For example, abstract argument systems, including the pioneering Dungean
models, abstract away much of the structure of argumentation, simply representing
arguments and attack relations between them (Dung, 1995). They specify crite-
ria for determining the status of an argument, that is, whether an argument is
acceptable, in terms of the absence of attacking arguments that are not themselves
attacked. One can extend Dungean models to account for more complex argu-
ment phenomena. For instance, a widely used computational model of argument,
ASPIC+, represents premises and conclusions and takes into account support as
well as attack relations (Modgil and Prakken, 2014). The Value-based Argumen-
tation Framework (VAF) (Section 5.4) also demonstrates building more complex
argument phenomena, arguing about underlying values, and extending Dungean
models.

127
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 128 — #2

128 Computational Models of Legal Reasoning

Other argument models are designed to preserve structural aspects of arguments
that may make them more intuitively accessible to practitioners. For example,
Verheij (2009) has developed models of legal argument that employ the familiar
Toulmin argument structures relating claims and evidence via warrants and back-
ing. The Carneades model, discussed in Section 5.2, also preserves an intuitively
accessible structure clearly distinguishing propositions and arguments that support
a conclusion from those that attack it.

This chapter does not aim to provide a comprehensive account of the alternative
argument models and their respective advantages and disadvantages in terms of such
considerations as expressivity and computational efficiency. For a readable survey,
see Rahwan et al. (2009).

Instead, the chapter focuses on a selection of argument models that have been
applied to legal argumentation and that have been illustrated with intuitively
accessible extended examples. As mentioned, the Carneades model introduced in
Section 5.2 and the extended example of Carneades in action in Section 5.3 illustrate
how a computational model of argument can support arguing both for a propo-
sition and its opposite as well as how to integrate arguing with legal rules and by
analogy to past cases. The VAF in Section 5.4 illustrates how to add underlying val-
ues into the argument model. An alternative model, the VJAP model (Section 5.7)
takes into account the effects of proposed decisions on trade-offs among values and
employs its arguments to predict outcomes. Finally, the default logic framework
(DLF) of Section 5.8 models legal evidentiary arguments. Along the way the chapter
addresses such issues as how some argumentmodels compute winners and losers, the
role of proof standards in certain models, and prospects for integrating probabilistic
reasoning.

The chapter also answers the following questions. What is a space of legal argu-
ments, and how does a program search it? How do computational models or
frameworks of legal argument employ legal argument schemes? How does a program
determine an argument’s acceptability or evaluate an argument’s strength? What
role does logical deduction play in arguing from legal rules and facts, and what is a
defeasible logic? Are computational models of legal proof standards realistic?

5.1.1. Advantages of CMLAs

As we have seen in Chapter 2, legal reasoning involves supporting arguments for a
proposition and for its opposite even where both sides argue from the same legal rules
and facts. A computer program can reason deductively with rules of law; applying
classical logical deduction, it can draw conclusions by applying rules of inference
like modus ponens. Classical logical deduction, however, cannot support arguing
both for a proposition and its opposite. This makes it an inadequate tool for modeling
legal argument.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 129 — #3

Computational Models of Legal Argument 129

Attempts to model legal reasoning must also address two other major design
constraints, both of which were identified in Chapter 2:

1. Legal reasoning is non-monotonic; the inferences change once information is
added or becomes invalid. As new evidence or authoritative sources are added,
previously reasonable inferences need to be abandoned.

2. Legal reasoning is also defeasible. Legal claims need not be “true”; they only
need to satisfy a given proof standard. The conclusion of a defeasible rule is
only presumably true, even when the rule’s conditions are satisfied. Arguments
supporting and attacking the conclusionmay contradict and defeat each other.

Computational models of legal argument address these design constraints. Some
CMLAs can support arguing for a proposition and for its opposite even where both
sides argue from the same legal rules and facts. Unlike classical logic, CMLAs do
not employ strict inferences but instead use supporting or attacking arguments.
The CMLA’s argument semantics which may include acceptability criteria, proof
standards, and argument schemes, defined below, enable it to resolve conflicting
arguments and support inference. Together, these supply the “semantics” of an
argument.

5.2. the carneades argument model

As noted, Carneades is just one of a number of models suitable for legal argument
such as ASPIC+ (Modgil and Prakken, 2014), other models that extend Dungean
models, or abstract dialectical frameworks (Brewka and Gordon, 2010). Indeed,
although Carneades and these models use different representations and concepts
they are functionally isomorphic. Nevertheless, Carneades can be illustrated in
legally intuitive terms and supports “out of the box” enough concepts useful for mod-
eling legal argumentation (such as proof standards and argument schemes) that it is
worth introducing first.

Carneades computationally models the process of putting forth arguments about
the acceptability of propositions. A proposition is acceptable if it is presumably true
given the arguments up to that stage and a set of assumptions (see Gordon and
Walton, 2009).

The Carneades model comprises an argumentation framework, criteria for the
acceptability of arguments, proof standards, and argument schemes (Prakken, 1995;
Gordon and Walton, 2006).

An argumentation framework defines the concept of an argument as a structure
comprising a premise, a conclusion, and exceptions. The framework also specifies
the aspects of argumentation that are represented and the senses in which arguments
conflict for purposes of the model.

For each stage of the argumentation process, the argumentation framework
defines a decision procedure to test if the proposition or argument at issue is

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 130 — #4

130 Computational Models of Legal Reasoning

acceptable given the acceptability criteria. The criteria provide some basis for
resolving a conflict, such as preference relationships for ordering the arguments
by importance. The procedure enables deciding the status of an argument, such
as whether an argument has “won,” “lost,” or left the dispute undecided (Prakken,
1995). This determination may depend on the proof standard applicable to the issue.
A proof standard is the level of certainty required to establish the proposition for
purposes of the argument (see Weiss, 2003).

At each stage of the argumentation process, an arguer (automated or human)
commonly needs to find or construct additional arguments that make an accept-
able statement unacceptable or an unacceptable statement acceptable. Argument
schemes aid in the search for additional arguments and counterarguments.

Argument schemes represent typical patterns of legal argument. Schemes are tem-
plates or “blueprints” for typical kinds of legal arguments whose premises can be
established based on assumed facts or as conclusions of other argument schemes.
Some common schemes or patterns of legal argument include arguing from legal
rules, by analogy to past cases, or from underlying values. There are also argument
schemes for countering such arguments, such as distinguishing a precedent or citing
a trumping counterexample.

As templates, argument schemes serve a useful function in computational mod-
els. Their “components are pre-defined and can be filled with information inferred
from the available knowledge” (Gordon and Walton, 2009, pp. 2, 8). In effect, these
templates lay out a space of possible alternative ways in which to make or respond
to an argument. Using “[h]euristic methods [a computer program can] search this
space for sets of arguments in which some goal statement or argument is acceptable
or rendered unacceptable” (Gordon and Walton, 2009, pp. 2, 8).

Argument schemes may include critical questions that help to assess if and how an
argument scheme applies in a specific case. Each type of argument scheme has its
own critical questions (Walton and Gordon, 2005). Some critical questions pertain
to acceptability of the scheme’s premises. Other questions point out exceptional cir-
cumstances in which the scheme may not apply. If the answer to a critical question
reveals a failed assumption or exception, it gives rise to a possible counterargument
(Prakken, 1995; Gordon andWalton, 2006; see also Grabmair and Ashley, 2010, 2011).
In addition, an argument scheme may be contradicted by conflicting applications of
the same or another scheme (Prakken, 2005).

Carneades constructs a legal argument incrementally as it establishes premises.
At any given stage, the model evaluates if a proposition is acceptable given other
propositions in the argument and a set of assumptions. In determining the sta-
tus of an argument, the model may apply computational approximations of legal
proof standards such as preponderance of the evidence. At each stage, the model
also searches for new arguments that make unacceptable statements acceptable
or acceptable statements unacceptable; the latter are counterarguments. The legal
argument schemes guide this search.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 131 — #5

Computational Models of Legal Argument 131

figure 5.1. A Carneades argument diagram (Gordon, 2008b,c; Gordon and Walton,
2009; Walton and Gordon, 2009; see Ashley, 2012)

5.3. an extended example of a cmla in action

One can illustrate how a computational model of legal argument can support
arguing both for a proposition and its opposite in an extended example with the
Carneades argument model (Gordon et al., 2007).

Carneades constructs argument diagrams (also known as argumentmaps) that rep-
resent the structure of a legal argument in an intuitively appealing way. The diagrams
distinguish between propositions and arguments that support a proposition and those
that attack the proposition. For this reason, the Carneades argument framework is
called bipartite. In addition, arguments can be made for a proposition p and against
the negation of p.

The example argument happens to involve some issues of German family law. In
the Carneades diagram shown in Figure 5.1,1 statement nodes representing proposi-
tions are boxes; argument nodes are circles (with a “+” indicating support; a dashed
line indicates opposition to the argument’s applicability). Statement nodes in a
Carneades diagram are assigned a status of “stated,” “questioned,” “accepted,” or
“rejected.” The model infers the applicability of argument nodes and the accept-
ability of statement nodes. (The content of the argument represented in the figure
is discussed below.)

1 Carneades diagramming conventions have evolved over time. See the version history at Gordon
(2015b). The diagrams shown here are based on an older version that seems especially easy to
understand. I am grateful to Matthias Grabmair for helping me to construct these examples.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 132 — #6

132 Computational Models of Legal Reasoning

In the Carneades framework, arguments may attack each other by rebuttal,
undermining, and undercutting. Rebuttals are “arguments pro and con some
conclusion . . . The conflict between the rebuttals is resolved by weighing the argu-
ments and applying proof standards” (Gordon, 2015a, p. 34). When one argument
contradicts (i.e., undermines) the premises of another argument, the former is called
an undermining argument (Gordon, 2015a, p. 44). Undercutting arguments are those
that attack another argument’s applicability. In an argument diagram, an undercut-
ter is depicted as an argument node whose conclusion is another argument node
instead of a statement node (Gordon, 2015a, p. 21).

5.3.1. Family Law Example with Carneades

Tom Gordon and Doug Walton have provided a classic example illustrating a struc-
tured legal argument involving a set of rules roughly derived from German family
law statutes (see Gordon, 2008b,c; Gordon and Walton, 2009; Walton and Gordon,
2009):

Rule §1601-BGB: x is obligated to support y if x is in direct lineage to y

Rule §1589-BGB: x is in direct lineage to y if x is an ancestor of y

Rule §91-BSHG: §1601-BGB excludes “x is obligated to support y” if “x is obligated
to support y” would cause x undue hardship

Rule §1602-BGB: x is not obligated to support y under §1601-BGB unless y is needy.

Suppose we are given as a fact that George is an ancestor of Martha (her parent
or grandparent) and we want to know, given the above set of legal rules, whether
George has an obligation to support Martha.

Before we examine how the Carneades system would go about it, let’s imagine
how a program implementing classical logical deduction such as the BNA program
of Chapter 2 would apply these legal rules to determine if George is obligated to
provide Martha support.

With one application of backward chaining and two applications of deductive
reasoning with modus ponens, the BNA program would conclude that George is in
direct lineage to Martha and has an obligation to support her under rule §1601. The
system cannot draw this conclusion directly from rule §1601, however, since that
rule speaks only of “direct lineage.” That is where backward chaining comes in (see
Section 1.3.1). As illustrated in Figure 5.2, applying backward chaining, the system
can find a rule, §1589, that could conclude that George is in direct lineage toMartha.
Carneades then determines that the antecedent of rule §1589 is satisfied based on the
fact that George is an ancestor of Martha.

Suppose one next learns that being obligated to support Martha would cause
George undue hardship. As illustrated in Figure 5.3, as a matter of deductive rea-
soning with rules, rule §91 would then apply and George’s having an obligation to

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 133 — #7

Computational Models of Legal Argument 133

figure 5.2. Classical deduction (Gordon, 2008b,c; Gordon and Walton, 2009; Walton
and Gordon, 2009)

figure 5.3. Classical deduction cannot prove proposition and its opposite (see Gordon,
2008b,c; Gordon and Walton, 2009; Walton and Gordon, 2009)

support Martha would be excluded. The BNA-type system has already proven, how-
ever, that George did have an obligation to support Martha. In other words, it would
now have proven two inconsistent consequences; George is both obligated and not
obligated to support Martha.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 134 — #8

134 Computational Models of Legal Reasoning

figure 5.4. Scheme for arguments from defeasible inference rules (see Gordon,
2008b,c; Gordon and Walton, 2009; Walton and Gordon, 2009)

This phenomenon frequently happens in legal reasoning, but, as explained in
Chapter 2, it is problematic for classical logical deduction. Classical logic is mono-
tonic; once something has been proven, it cannot be “unproven” even on the basis
of new information.Moreover, in a classical model of logical deduction, an ability to
prove a proposition and its opposite means that the system is inconsistent and could
prove anything. (See short proof in Section 2.4.2 of this “explosive” feature of classi-
cal logic.) In other words, if one wishes a computer to make arguments pro and con
from legal rules, classical logical deduction fails.

Computational models of argument like Carneades avoid this problem by using
non-monotonic reasoning (also known as defeasible reasoning) and appropriate
argument schemes.

5.3.2. Arguing with Defeasible Legal Rules

In a computational model of argument, legal rules are modeled as defeasible infer-
ence rules, and the argument schemes for drawing legal inferences from the rules
are also defeasible.

As suggested in Figure 5.4 at the left, the conclusion of a defeasible inference rule
is only presumably true. It is subject to a list of exceptions and assumptions to the
rule’s application (sometimes referred to as critical questions, see Section 5.2), which,
if established, defeat the rule’s conclusion.

For example, Rule §1601-BGB would be represented as a defeasible inference
rule as shown in Figure 5.4 at the right. Its conclusion, obligated-to-support (x, y),

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 135 — #9

Computational Models of Legal Argument 135

is only presumably true even if the premises, direct-lineage (x, y), are satisfied. The
conclusion is subject to a variety of assumptions and exceptions.

In particular, Rule §1601-BGB’s assumptions and exceptions would include an
exception based on rule §1602-BGB, an exclusion based on rule §91-BSHG, and
more general assumptions that the rule is valid and not subject to some conflicting
rule of higher priority.

Carneades can reason and construct arguments with such defeasible inference
rules and diagram the arguments it makes. If one specifies a goal of showing that
George does have a legal obligation to support Martha (indicated by the hashed cir-
cle at the root node in Figure 5.1), theCarneades rules engine reasons backward from
that goal to find defeasible inference rules to support that goal: §§1601 and 1589. As
the arguments are constructed and edited, they are visualized in the argument dia-
gram as shown in the figure. Incidentally, Carneades’ legal reasoning is an example
of subsumption (see Section 2.5.1), but in determining whether a legal concept sub-
sumes a fact situation, it employs defeasible rules and a variety of argument schemes,
not just deductive inference.

Of course, so far this is pretty much the same way that the BNA program would
infer a conclusion based on a statutory rule (see above). There is a subtle difference
here, however. Carneades has constructed an argument that George is obligated to
support Martha by applying an argument scheme, argument-by-deduction. As we
will see, this is just one of the argument schemes that Carneades can apply.

If one then specifies a goal of defeating that argument, Carneades searches the
defeasible rule’s representation for exceptions, exclusions, or failures of assumptions
that can prevent the argument’s presumed conclusion.

Given as a fact that being obligated to support Martha would cause George undue
hardship, Carneades finds an applicable rule that excludes §1601, namely §91, and
modifies the diagram (Figure 5.5).

That is, with a representation of the legal rules as defeasible, the program can
find failed assumptions, exceptions, or exclusions that prevent a former argument’s
presumed conclusion. In addition, unlike classical logical deduction, Carneades,
with its defeasible legal rules and arguments, can support arguments pro and con a
proposition (compare Figures 5.3 and 5.5).

5.3.3. Integrating Arguing with Cases and Rules

A second major purpose of computational argument models is to integrate into one
framework the different types of arguments legal practitioners apply, including those
whose models are featured in Chapters 2 through 4. Beside deductive arguments
from defeasible rules, arguments by analogy to past cases or from values and purposes
underlying legal rules can all be formalized with argument schemes and integrated
into one argument model with critical questions.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 136 — #10

136 Computational Models of Legal Reasoning

figure 5.5. Arguments (pro and con) with defeasible inference rules (Gordon, 2008b,
c; Gordon and Walton, 2009; Walton and Gordon, 2009; see Ashley, 2012)

figure 5.6. When the rules run out (see Gordon, 2008b, c; Gordon and Walton, 2009;
Walton and Gardon, 2009)

For instance, suppose in the above example we encounter a situation, shown in
Figure 5.6, where the rules “run out.” We are not given as a fact that being obligated
to support Martha would cause George undue hardship. In addition, we see that
“undue hardship” is not further defined by a legal rule. A new fact has been learned,
however, George and Martha never had a parent–child relationship.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 137 — #11

Computational Models of Legal Argument 137

table 5.1. Legal factors and precedents regarding undue hardship (see Gordon,
2008b, c; Gordon and Walton, 2009; Walton and Gordon, 2009)

Plaintiff(P) Legal Factors (pro finding of undue hardship)

PF1 Has-already-provided-much-support
PF2 Never-had-parent–child-relationship
PF3 Would-cause-irreparable-harm-to-family

Defendant(D) Factors (con finding of undue hardship)

DF1 Expected-duration-of-support-is-short
DF2 Has-not-provided-care

Casebase, cb1

Miller P wins undue hardship issue where {PF2}
Smith D wins undue hardship issue where {PF2, DF1}
Farmer P wins undue hardship issue where {PF2, DF1, PF3}

Assuming the goal is still to show that George is not obligated to support Martha,
can Carneades make any other arguments?

In a common law jurisdiction like the United States, attorneys would look to previ-
ously decided legal cases to determine if and how courts have determined the issue of
“undue hardship.” Having found such cases, attorneys would then make arguments
by analogy that the current case should or should not be decided in the same way as
in these prior cases.

Of course, those arguments may lead to further arguments, as well. Some analo-
gous cases may support a conclusion that there is undue hardship and others may
support the opposite conclusion; some cases will bemore analogous than other cases,
which may lead the arguer to distinguish them or cite counterexamples.

Chapter 3 illustrated some models of case-based reasoning that can make argu-
ments like these. These models can be implemented as argument schemes and
integrated into an overall computational model of argument like Carneades.

Let’s assume that we are using a version of Carneades equipped with a CATO-
style case-based argument scheme and we have available a line of precedents and
legal factors (stereotypical patterns of fact that tend to strengthen or weaken a legal
conclusion) related to the issue of undue hardship. In particular, assume that the
legal factors and cases in Table 5.1 all deal with the concept of undue hardship.

When Carneades is instructed to argue against the proposition that George is
obligated to support Martha, the program could:

1. Search the critical questions of §1601.
2. The entry “Unless some rule excluding §1601 applies” leads it to search for a

rule whose consequence is that §1601 is excluded.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 138 — #12

138 Computational Models of Legal Reasoning

figure 5.7. Carneades case-based argument (con) (Gordon, 2008b, c; Gordon and
Walton, 2009; Walton and Gordon, 2009; see Ashley, 2012)

3. Finding §91, it then searches for a rule whose consequence involves “undue
hardship.”

4. Finding the rule of the Miller case (P wins undue hardship issue if {PF2}),
it constructs an argument according to the case-based argument scheme that
§1601 is excluded. This argument is shown in Figure 5.7.

If it were then revealed that support for Martha is needed for only a short time
period, Factor DF1 would apply. If Carneades were instructed to support the propo-
sition that George is obligated to support Martha, a critical question associated with
the case-based argument scheme, “Unless a trumping counter-example,” would lead
Carneades to cite the more-on-point Smith case {PF2, DF1} which was decided
against undue hardship (see the argument in Figure 5.8).

Carneades can construct all of these arguments. It illustrates how AI & Law work
on computational models of argument can integrate the rule-based and case-based
legal reasoning models we have seen in the preceding chapters.

In above example, the CATO model of case-based legal reasoning has been
“plugged into” the Carneades argument model as an argument scheme. As noted,
argument schemes model typical patterns of argumentation in the legal (and other)
fields. This might be called the “Argument from Shared Legal Factors”: If the prece-
dent shares legal factors with the current case, then argue that the current case should
be decided in the same way as the precedent.

The argument model would also be equipped with argument schemes for
responding to an Argument from Shared Legal Factors including distinguish-
ing cases, downplaying and emphasizing distinctions, and citing counterexamples

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 139 — #13

Computational Models of Legal Argument 139

figure 5.8. Carneades case-based argument (pro) (Gordon, 2008b,c; Gordon and
Walton, 2009; Walton and Gordon, 2009; see Ashley, 2012)

(Aleven, 2003). One could also implement variations that pick up features and
arguments based on Hypo (Ashley, 1990) or CABARET (Rissland and Skalak, 1991).

Indeed, most of the computational models of the previous chapters can be re-
characterized as argument schemes and integrated in an argument model like
Carneades. For example, one could implement the Argument Scheme from Theory
Construction (McCarty and Sridharan, 1981; cf. Bench-Capon and Sartor, 2003): If
a theory can be constructed which explains a line of precedents and hypotheticals
about the same issue as the current case, then argue for applying the theory to the cur-
rent case. One could also implement the Argument from Criterial Facts (GREBE,
(Branting, 1991); cf. SIROCCO, (McLaren, 2003)): If an open-textured predicate in
a statute was decided to have been satisfied by the criterial facts of a precedent and
these criterial facts are similar to the facts of the current case, then argue that the
open-textured predicate is also satisfied in this case.

5.4. computational model of abstract argumentation

As the family law example arguments illustrate, Carneades, with its bipartite argu-
ment framework, represents a legal argument’s structure: the arguments that support
a proposition and those that attack it.

In contrast, an abstract argumentation framework, a different kind of argument
framework, employs argument graphs that contain only arguments that attack each
other. This means that the internal argument structure involving supporting and
attacking arguments is abstracted away (although some structure can be recon-
structed as indicated below). Invented by Phan Minh Dung, abstract argumentation

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 140 — #14

140 Computational Models of Legal Reasoning

figure 5.9. Attacking arguments as per VAF (see Atkinson and Bench-Capon, 2007,
p. 113)

frameworks provide certain advantages theoretically and in terms of computational
efficiency (Dung, 1995).

An abstract argument framework is defined as a set of arguments A and the attack
relations R between pairs of these arguments. It is modeled as a directed graph, that
is, a graph whose edges are, in effect, arrows. The nodes represent arguments and
the arrows indicate which arguments an argument attacks. To evaluate an argu-
ment’s status in an abstract argument framework including its acceptability, one
considers if the argument can be defended from attack from the other arguments
in a set of arguments S that is a subset of or equal to A (Dung, 1995; Atkinson and
Bench-Capon, 2007).

An argument based on one of the property-interests-in-wild-animal cases of
Sections 3.4 and 3.5.1 is illustrated in Figure 5.9 as a particular kind of abstract argu-
mentation framework, a VAF. A VAF extends the abstract argumentation framework
so that arguments can be labeled by type. Some arguments involve disputes about
the facts and are marked as involving factual claims or assertions. Others involve
disputes about the underlying values or goals of the law and are marked according
to the values promoted by the arguments if accepted (Bench-Capon, 2003; Atkinson
and Bench-Capon, 2007).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 141 — #15

Computational Models of Legal Argument 141

For example, Figure 5.9 illustrates an argument in Young v. Hitchens, the dis-
pute between the plaintiff Young, a commercial fisherman, and defendant Hitchens,
who slipped through plaintiff’s net and caught the fish that the plaintiff had already
partially corralled.

The set of arguments A is illustrated at the right. Plaintiff Young’s arguments are
marked Y#; those of defendant Hitchens are marked H#. Some of the arguments are
marked as involving fact claims. (Since not all of the arguments appear in the text
of the decision, the authors supplied some factual arguments in order to illustrate
how to model them.) Other arguments are labeled with the values they promote.
The authors adopt a list of values underlying the legal regulations applicable in the
property-interests-in-wild-animals domain similar to that illustrated in Figure 3.13.
The arrows at the left of Figure 5.9 represent the attack relations between pairs of
arguments.

Abstract argument frameworks have one major limitation: it is awkward to rep-
resent a legal argument with only attack relations. One way to deal with that in a
VAF is by representing “an attacker of an attacker of the supported argument.” For
instance, plaintiff Young makes two arguments in support of his claim, Y4 and Y5.
They are represented in the diagram as attacking the negation of P, where P is a
claim that plaintiff should win.

The lack of structure in VAF representations of arguments is another drawback.
While Figure 5.9 is my attempt to make the representation more conveniently
readable, it is not as easy to interpret as a Carneades diagram. Alternative argu-
ment frameworks such as ASPIC+ combine the theoretical and efficiency benefits
of abstract argument frameworks with the convenience of structured argument
representations (Modgil and Prakken, 2014).

5.5. how cmlas compute winners and losers

The goal of the computational models of legal argument illustrated above is to
combine in one model arguing about the facts of a case, the applicable law, and
underlying values, and, to the extent possible, to determine the winning and losing
arguments. As we will see below, the focus in some other computational models is
more descriptive: to describe or model in detail, the decisions a judge makes and
the justifications the judge offers as reported in the opinion.

In practical terms, arguing about case facts, applicable legal rules, underlying
values, and, perhaps, procedural issues, requires a hierarchy of argumentation frame-
works. Each level of argument is equipped with its own variety of argument schemes,
procedures for determining the acceptability of arguments, standards of proof, and
“differ[ing] notions of acceptability of arguments based on preferences between
arguments, the preferences being justified at a meta-level of argumentation.”

Propositions about facts, rules, and values can all appear in a value-based argu-
ment diagram as illustrated in the Young case argument in Figure 5.9. At this base

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 142 — #16

142 Computational Models of Legal Reasoning

level, the arguments are about facts and about values. In order to resolve con-
flicting arguments about facts or about values, however, the program needs to “go
meta.” That is, it pops up to a factual conflict-resolution level and invokes argument
schemes for resolving factual disputes, such as by asking critical questions about
witness testimony. It also pops up to a value conflict-resolution level and invokes
argument schemes for resolving disputes about values, for example with a scheme for
arguing from values as in the Bench-Capon/Sartor model (Section 3.5.1) (Atkinson
and Bench-Capon, 2007). Examples illustrating both of these conflict-resolution
levels are presented next.

5.5.1. Resolving Conflicting Arguments about Facts

For instance, as shown in Figure 5.9, H1, a factual claim (i.e., “Young’s nets were
breaking: the fish were about to escape.”) attacks, and is attacked by another factual
claim, Y2 (i.e., “The fish had no prospect of escape.”) How would such a conflict be
resolved in a VAF?

[E]ach conflict as to fact will need to be resolved separately through a meta-level
argument, and the outcome of the meta-level will result in each argument being
assigned the status justified, arguable or unsupported. [emphasis added] (Atkinson
and Bench-Capon, 2007).

The conflict-resolution level of the argumentation framework hierarchy would be
equipped with argument schemes for reasoning about facts which include critical
questions tailored to the legal evaluation of factual assertions. These, in turn, provide
a basis for a preference ordering of competing factual claims. For example, critical
questions about factual claims probe the credibility of the witness whose testimony
supports the claim: Is the witness biased? Was the witness in a position to know?
In modern litigation contexts, expert witness testimony would be subject to critical
questions such as: Is the witness an expert in the relevant domain? Is the witness’s
assertion consistent with what other experts assert? Is the expert witness’s assertion
based on evidence? (see Walton and Gordon, 2005).

If answers to such critical questions can be obtained, they provide a basis for resolv-
ing a factual conflict, say, between H1 and Y2 in Figure 5.9, in favor of the plaintiff
Young, since the defendant is a biased witness. Then, the results of applying the pref-
erences would be compared to the relevant proof standard. (See the right-hand side
of Table 5.2 for the Carneades definitions of the standards of proof.) The ones that
do not survive would be removed:

Which [arguments have insufficient support] depend[s] on the proof standard appli-
cable in the context: for beyond reasonable doubt only justified arguments will be
retained, whereas for scintilla of evidence all arguments can be retained. (Atkinson
and Bench-Capon, 2007)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 143 — #17

Computational Models of Legal Argument 143

As a result of this process, there will be a “single set of arguments accepted,
which will be justified to a degree represented by its weakest member” (Atkinson
and Bench-Capon, 2007).

5.5.2. Resolving Conflicting Arguments about Values

Also as shown in Figure 5.9, the Young argument involves conflicting appeals to
underlying values. For instance,

Y3 (i.e., “They were my fish because they had no prospect of escape. Granting pos-
session with this degree of control encourages fishing.”)
attacks (7−→)
H2 (“The fish were available for capture since they had not been caught. Bright line
argument based on need for clarity.”)

H3 (“Competition must be expected in business. Setting up value for H4.”) and H4
(“I should not be punished as that would inhibit vigorous competition. Counter
appeal to value of competition.”)
attack (7−→)
Y5 (“Hitchens should be punished as unfair practices such as his threaten the fishing
industry. Appeal to the value of encouraging fishing.”)

How does a VAF support/resolve arguments about values like Y3 vs. H2? According
to Atkinson and Bench-Capon (2007), “We next need to make a value comparison:
should we prefer . . . to encourage fishing or clarity?”

For purposes of making this kind of comparison, the authors need some ordering
of competing values. As the authors put it in Atkinson and Bench-Capon (2007):

[W]e will need some indication of which is the right ordering of the competing
values, and here precedent becomes relevant . . . [I]t is possible to cite precedents
to show that a particular ordering was used in the past, authorities to give weight
to adopting a particular order, or to appeal to a teleological argument to justify the
order . . . Hitchens can cite Pierson itself, while Young can give Keeble as a counter
example. Hitchens may distinguish Keeble, on the grounds that Keeble was on his
own land, and this was the reason to grant him possession of the ducks.

These are case-based arguments similar to those we saw in the Carneades exam-
ple above. In the VAF, however, they are made at the meta-level of the argu-
mentation framework hierarchy in order to resolve the conflict in values (again
applying the relevant standard of proof). The value preferences are based on the
Bench-Capon/Sartor view that the cases induce a theory of preferences among val-
ues. That is, the ordering is inferred from the outcomes of precedents in which
some values were preferred over others, as per the model of theory construction
from factor and value preferences in Bench-Capon and Sartor (2003) as discussed in
Section 3.5.1.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 144 — #18

144 Computational Models of Legal Reasoning

5.5.3. Resolving Conflicting Arguments about Legal Rules

Although the VAF in Young does not include examples of resolving conflicting argu-
ments about legal rules, the Carneades examples above convey the following idea.
In the VAF, conflicting arguments about rules would be resolved at the meta-level
with the same kinds of argument schemes for reasoning with defeasible legal rules
as illustrated above.

In addition, some CMLRs like Carneades supplement those argument schemes
with so-called Canons of Construction or Maxims of Interpretation, more general
interpretive principles to resolve conflicting arguments about legal rules, such as:

• Lex Specialis: More specific rules have priority over more general rules.
• Lex Superior: Rules backed by higher authority have priority over rules backed

by a lower authority (e.g., Federal law has priority over state law).
• Lex Posterior: Later rules have priority over earlier rules.

In Gordon and Walton (2006), the Carneades program applied Lex Specialis
to resolve a conflict between two rules derived from precedents concerning the
meaning of “grievous bodily harm.” One rule stated that “several broken ribs do
not amount to grievous bodily harm” and the other rule held that “several broken
ribs with complications amount to grievous bodily harm.” Applying Lex Specialis,
where the problem involved several broken ribs with complications, the program
resolved conflicting arguments based on the two rules in favor of the second more
specific one.

While applying a Canon of Construction conveniently resolves the rule conflict
in this simple example, the approach raises some questions discussed next.

5.6. how practical are computational models of legal argument?

Despite the important contributions of computational models of legal argument,
onemay reasonably ask if, when, and howCMLAs will make a practical contribution
to the practice of law.

First, the above examples of legal argument are, after all, still toy examples.
The fact situations are simple and few in number, and the legal resources with
which to make an argument involve, at most, a half-dozen legal rules or cases. The
programs illustrated so far have not been applied with hundreds of cases and cer-
tainly not cases in textual form. All of the legal resources are input and represented
manually.

The argument schemes are legally realistic as far as they go, but their application
can seem a bit ad hoc. Consider Lex Specialis, for example. In the above example, it
is conveniently invoked to resolve a conflict between two norms derived from prece-
dents. One could imagine, however, an argument against applying this principle of
statutory or treaty interpretation to resolve a conflict between two rules elaborated in

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 145 — #19

Computational Models of Legal Argument 145

courts in different cases. Confidence in the utility of Canons of Construction may
vary across civil law vs. common law legal systems. In a classic article in 1949, Karl
Llewellyn famously argued that the Canons of Construction are mere makeweights.
In particular, every canon had a “counter-canon” that would lead to the opposite
interpretation of the statute (Llewellyn, 1949). Thus, Lex Specialis may apply, but its
application would be subject to argument for which appropriate schemes have not
been provided.

Second, the CMLAs generally have not been evaluated empirically. Of course,
it is not a simple matter to evaluate a computational model of argument. We have
seen, however, at least two approaches to evaluating programs that generate legal
arguments. One can ask humans and the program to generate arguments about the
same fact situations and invite a human expert to grade them in a blind test, as
Branting did with GREBE (see Section 3.3.3). Another approach to evaluating an
argumentation model is to assess how well it predicts outcomes of cases as com-
pared to other approaches. For instance, versions of the CATO model of case-based
legal argument were evaluated by comparing their outcome predictions and those
of other models, such as Issue-based Prediction, as described in Chapter 4. Such an
evaluation of a new CMLA, the VJAP model, is described below.

Third, although most of the proof standards have familiar legal names, the
CMLA’s operationalization of them do not appear to correspond closely to the
legal versions of those standards. As explained below, legal standards of proof such
as “preponderance of the evidence” refer to concepts that are difficult to model
computationally.

5.6.1. Role of Proof Standards in CMLAs

Proof standards are a familiar aspect of legal arguments. For example, “beyond a
reasonable doubt,” the proof standard for a criminal conviction, requires proof “so
convincing that a reasonable person would not hesitate to act; proof that leaves you
firmly convinced . . . [no] real possibility that he is not guilty.” (Weiss, 2003)

As noted, proof standards also play an important role in computational models of
argument. “The acceptability of a statement depends on its proof standard.”Whether
a statement’s proof standard is satisfied depends on whether the arguments pro
and con the statement are defensible. Whether an argument is defensible depends
on whether its premises hold. Whether its premises hold depends on whether the
premise’s statement is acceptable and so forth (Gordon et al., 2007, p. 884).

Carneades implements a number of proof standards shown in Table 5.2 (Gor-
don and Walton, 2006). As indicated, some of them correspond to familiar legal
standards.

A comparison of the descriptions of the legal and Carneades proof standards sug-
gests the difficulty of developing computational implementations that correspond
closely to at least some of the legal standards. Beyond a reasonable doubt requires

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 146 — #20

146 Computational Models of Legal Reasoning

table 5.2. Some proof standards in Carneades (Gordon and Walton, 2006) and legal
counterparts (Weiss, 2003; Feller, 2015)

Proof Standard Legal Formulation Carneades Version

Scintilla of
evidence

A mere scintilla of evidence
sufficient to justify a suspicion is
not sufficient to support a finding
upon which legal rights and
obligations are based. That
requires “such relevant evidence
as a reasonable mind might
accept as adequate to support a
conclusion.”

A statement meets this standard
iff it is supported by at least one
defensible pro argument.

Preponderance
of the evidence
(Civil Law)

This standard requires the
existence of a contested fact be
more probable than not.

A statement meets this standard
iff it is supported by at least
one defensible pro argument
and its strongest defensible pro
argument outweighs its strongest
defensible con argument, if any.
This standard balances
arguments using probative
weights.

Dialectical
validity

Not applicable. A statement meets this standard
iff it is supported by at least
one defensible pro argument and
none of its con arguments are
defensible.

Beyond a
reasonable
doubt
(Criminal
Law)

This standard requires proof so
convincing that a reasonable
person would not hesitate to
act; proof that leaves you firmly
convinced . . . [with no] real
possibility that he is not guilty.

A statement meets this standard
iff it is supported by at least one
defensible pro argument, all of
its pro arguments are defensible,
and none of the con arguments
are defensible.

evidence “so convincing that a reasonable person would not hesitate to act; proof
that leaves [one] firmly convinced.”

Computationally implementing notions of reasonableness of human belief or
conviction is not straightforward. Indeed, the authors “do not claim that the defi-
nitions of these standards, above, fully capture their legal meanings.”

The Carneades versions, however, do preserve the relative degree of strictness of
the legal standards (i.e., Beyond a reasonable doubt>Dialectical Validity> Prepon-
derance of the Evidence > Scintilla of Evidence).2 “If a statement satisfies a proof
standard, it will also satisfy all weaker proof standards” (Gordon and Walton, 2006).

2 As a legal standard, “scintilla of evidence” is archaic. Actually, more than a “scintilla of evidence” is
required. For instance, the “Substantial Evidence” test in administrative law requires “such relevant
evidence as a reasonable mind might accept as adequate to support a conclusion” (Feller, 2015).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 147 — #21

Computational Models of Legal Argument 147

5.6.2. Integrating Probabilistic Reasoning into CMLAs

A final critique of CMLAs might be that the argument models have tended to jum-
ble together issues of fact, law, and underlying values, which in procedural terms are
decided at different levels in a court hierarchy or different stages of a court proceed-
ing. See, for example, the mixture of factual and value-based arguments in the VAF
of the Young case in Figure 5.9. CMLAs also tend to oversimplify the realities of legal
practice. Obtaining accurate answers to critical questions about factual assertions is
not trivial. Assessing the credibility of witnesses is a job for human juries or judges.
Knowing which critical questions to ask in any given context is the job for alert legal
counsel. This probably goes beyond the ability of any CMLA.

This critique, however, may miss the point of a computational model of legal
argument. These models with their argument schemes and pre-stored generic crit-
ical questions might best be thought of as tools to enable attorneys to model what
might happen based on various assumptions about witness credibility or consistency
with other testimony.

A CMLA could, thus, be seen as a tool for planning a legal argument. A litigator
could use the tool to explore possible outcomes of arguments. The litigator could add
all the factual, legal, normative, and procedural arguments that s/he can anticipate,
observe what outcomes the model predicts, and test the sensitivity of the predictions
to various changes in input arguments and assumptions made. At least, that would
be the goal of legal argument modelers: to create a practical argument planning
tool.

This goal might be more feasible if litigators could input their best assessments of
particular arguments’ likelihood of success given the uncertainties of the litigation.
In most practical contexts, the propositions in a legal argument are uncertain. There
is uncertainty, for instance, about whether a fact is true, or, perhapsmore pertinently,
whether it will be received in evidence and credited by a trier of fact. Similarly, there
is uncertainty about whether a court will accept the advocate’s recommendations
about which legal rule to apply, how to interpret what the legal rule means, and how
to apply it to a case’s facts.

In planning a legal argument, it would be useful to integrate reasoning about
these uncertainties into the computational argument models. For one thing, prob-
ability should come into the standards of proof. As indicated in Table 5.2, the
middle column, the preponderance of the evidence standard of proof is expressed
in terms of probability: the existence of a contested fact is more probable than not.
As characterized in Atkinson and Bench-Capon (2007):

[I]n an [abstract argument framework] . . . , in cases of incomplete information we
may [have a] lack of knowledge as to whether or not some fact holds. We would . . .

need . . . to supply some standards intermediate between beyond reasonable doubt
and scintilla of evidence. One way of handling this if the information is available
would be to associate arguments with probabilities.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 148 — #22

148 Computational Models of Legal Reasoning

Competing arguments could then be compared in terms of their respective
probabilities of success:

[W]hen we have to make choices . . . , we could calculate the probability of [an
option’s being] the correct choice. This kind of approach based on probabilities for
each argument, would certainly be able to give content to the notion of “balance
of probabilities” . . . We, however, do not believe that such information is normally
available. (Atkinson and Bench-Capon, 2007)

Integrating probabilities into CMLAs raises at least two issues:
One issue is how best to organize the integration. Given the uncertainty of fac-

tual assertions, their status in the argument could best be expressed by probabilities
over the alternative statuses. If the argument formalism could then compute the
probabilities over the status of the inferred, nonfactual assertions but still propa-
gate arguments according to the argument formalism, that could be an effective
integration. The qualitative model of argument could thus be extended to support
quantitative methods for reasoning about uncertainty.

Bayesian networks (BNs) are one such quantitative method for reasoning about
uncertainty. They are commonly used to model conditional dependencies among a
set of random variables. For example, the probabilities of inferred conditions such
as diseases can be computed given certain observed facts or symptoms. As explained
in Section 7.5.3, BNs reduce computational complexity and integrate well with ML
methods. A systematic method for reducing Carneades argument graphs to BNs is
presented in Grabmair et al. (2010), which also surveys other approaches to such an
integration.

A second issue is “Where will the probabilities come from?” Litigators have intu-
itions about the uncertainties associated with various elements of their arguments.
These include such things as the likelihood of getting a trier of fact to believe a given
factual inference or to assign a particular value to a consequence of a proposed deci-
sion. They could estimate these uncertainties and assign them as weights to factual
assertions and arguments represented in the argument diagram. The subjectivity of
setting weights by intuition is ameliorated somewhat by the possibility of sensitivity
testing, that is, enabling the user to assess how changes in the assumed weights affect
the predictions and arguments.

Another source of probabilities could be from external data in corpora and
databases. In Chapter 4, we saw probabilities derived from features summarizing
information about cases, courts, judges and their backgrounds, and judicial trends
(see Figure 4.3). Below, we will see probabilities derived from previous decisions’
resolutions of conflicting values (although performed over a larger set of cases and
in amore context sensitive manner than in the approach of Bench-Capon and Sartor
(2003) in Section 3.5.1).

It is a separate question, however, whether these two approaches to using external
data to supply probabilities for CMLAs can derive those probabilities directly from

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 149 — #23

Computational Models of Legal Argument 149

legal texts. The approach in the Supreme Court prediction work of Katz et al. (2014)
probably cannot work directly with the texts of the cases in the corpora or databases. It
depends on engineering of features such as judicial attitudes or trends; these probably
cannot be extracted automatically from case texts.

Two remaining computational models of legal argument may fare better in this
respect. The VJAP model discussed next (like the approach in Bench-Capon and
Sartor (2003)) relies on manually assigned legal factors. The DLF (defined in
Section 5.8) whichmodels evidentiary legal argument, relies on, among other things,
manually assigned evidence factors. Using the text analytic techniques explained in
Parts II and III, both types of factors may come to be extracted automatically from
case texts and assist in predicting outcomes.

5.7. value judgment-based argumentative prediction model

Grabmair has implemented the VJAP model, a model for generating arguments and
predictions that take into account values underlying legal rules. He has implemented
the argument schemes in a computer program that predicts case outcomes based on
the resulting arguments and has tested the program in the domain of trade secret
law, the same domain of application as the Hypo, CATO, and IBP programs (see
Grabmair and Ashley, 2010, 2011; Grabmair, 2016).

His approach is based on an intuitively plausible assumption about legal reason-
ing: Inmaking legal decisions, judges consider the effects of a decision on applicable
values and assess whether they are preferable to the effects of alternative decisions. A
judge must make a value judgment, that is, a determination that in a particular fact
situation a decision’s positive effects outweigh the negative effects.

Such value judgments are assumed to be highly context-dependent; no abstract
hierarchy of values determines the value judgment in a particular case. Instead, legal
reasoning involves mapping and applying value judgments from one factual context
to another. This is accomplished by means of an argument that a target case’s set
of facts and the original factual context of the source case are both instances of an
abstract concept in a legal rule which, given the effects on applicable values, justifies
that they both should have a particular outcome.

In order to support these arguments, Grabmair prepared a domain model of the
abstract concepts, that is, the ILCs employed in the rules for deciding a claim, a
set of values and value effects underlying trade secret regulation, and competing
argument schemes for the proponent of a trade secret misappropriation claim and
its opponent.

ILCs are open-textured legal terms whose meanings frequently are ambiguous or
vague (see Section 2.2.1) and, thus, subject to argument. An intermediate legal con-
cept like “ownership, citizenship, guardianship, trusteeship, possession, etc.” “stands
as a mediating link between the requirements and the consequences.” It is “inter-
mediate” in the sense that some rule at the beginning of a chain of rules specifies

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 150 — #24

150 Computational Models of Legal Reasoning

figure 5.10. VJAP domain model (Grabmair, 2016)

factual requirements for preceding legal terms to apply, and those legal terms, in
turn, are requirements in other rules that ultimately imply the legal or normative
consequences (Lindahl, 2004; Wyner, 2008).

5.7.1. VJAP Domain Model

In constructing the VJAP domain model, Grabmair adapted the domain model
from the IBP program (Figure 4.4). As shown in Figure 5.10, he modified the logic
of the Info-Misappropriated issue, introduced a new sub-issue, Wrongdoing, and
reorganized or added some legal factors that the original model omitted.

The issues and sub-issues and their logical connections in the VJAP domain
model comprise the ILCs and legal rules for defining a claim for trade secret
misappropriation:

rtsm: trade-secret-misappropriation-claim⇐ info-trade-secret∧ info-misappropriated

rits: info-trade-secret⇐ info-valuable∧maintain-secrecy

rwd: wrongdoing⇐ breach-of-confidentiality ∨ improper-means

rim: info-misappropriated⇐ info-used∧wrongdoing

The legal factors associated with the leaf nodes represent stereotypical fact pat-
terns that strengthen or weaken a side’s argument concerning the issues/ILCs. See
Table 3.1 for the complete list of trade secret law Factors.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 151 — #25

Computational Models of Legal Argument 151

5.7.2. VJAP Values Underlying Trade Secret Regulation

Grabmair has developed a new set of values or “interests” protected by trade secret
law and a new way to connect the values to the Factor-based case representations
of CATO and IBP (Grabmair, 2016). These values include plaintiff’s interests in
property and confidentiality (Figure 5.11), and the general public’s interest in the
usability of publicly available information and in fair competition (Figure 5.12).

Grabmair has represented in greater detail the different ways in which the
legal factors affect protected values or interests. For example, certain factors may
make the protected interest more or less legitimate. Others may waive the pro-
tected interest, interfere with it or not interfere with it. For each of the protected
values or interests, Figures 5.11 and 5.12 indicate particular Factors’ effects on the
values underlying trade secret regulation. This way of representing the relationship
between values and legal factors provides more semantic information for a program
to apply than does the approach in Bench-Capon and Sartor (2003) or Chorley and
Bench-Capon (2005a).

Consider, for example, the Dynamics case,3 in which the plaintiff had developed
product information and was marketing a product based on the information. Plain-
tiff’s information was unique in that plaintiff was the only manufacturer making the
product (F15 Unique-Product (P)). Plaintiff took active measures to limit access to
and distribution of its information (F6 Security-Measures (P)). Plaintiff disclosed its
information in a public forum (F27Disclosure-In-Public-Forum (D)). At some point,
defendant obtained the product information. Defendant entered into a nondisclo-
sure agreement with plaintiff (F4 Agreed-Not-To-Disclose (P)). The nondisclosure
agreement did not specify which information was to be treated as confidential (F5
Agreement-Not-Specific (D)). Eventually, defendant developed a competing prod-
uct and commenced to sell it. Thereafter, plaintiff brought suit against defendant
for trade secret misappropriation.

One can summarize strengths and weaknesses of the plaintiff’s claim for trade
secret misappropriation in terms of the Factors in the Dynamics case and based
on the VJAP domain model in Figure 5.10, one can determine that there are con-
flicting Factors with respect to two issues under the rules, Maintain-Secrecy and
Breach-confidentiality (also referred to as Confidential-Relationship) but no con-
flict concerning a third issue, Info-Valuable (Grabmair, 2016, p. 31). That is as much
information as IBP would have about the case for purposes of prediction. AGATHA
would also have information about certain values associated with those Factors and
certain preference rules to resolve conflicts between Factors or between values.

VJAP, however, has additional information based on the Factors’ effects
on values protected under trade secret regulation (italicized below) shown in

3 Dynamics Research Corp. v. Analytic Sciences Corp. , 9 Mass. App. 254, 400 N.E.2d 1274, 209 U.S.P.Q.
321 (1980).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 152 — #26

152 Computational Models of Legal Reasoning

figure 5.11. Values protected by trade secret law: interests of plaintiffs in property and
confidentiality (Grabmair, 2016)

Figures 5.11 and 5.12 (Grabmair, 2016, pp. 44–7). For instance, in the Dynamics case,
arguably:

• Plaintiff’s property interest is legitimate because (F15) plaintiff’s information was
unique in that plaintiff was the only manufacturer making the product.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 153 — #27

Computational Models of Legal Argument 153

figure 5.12. Values protected by trade secret law: interests of general public in the
usability of publicly available information and in fair competition (Grabmair, 2016)

• Plaintiff has protected his property interest because (F6) plaintiff took active
measures to limit access to and distribution of its information, and (F4)
defendant entered into a nondisclosure agreement with plaintiff.

• Plaintiff has protected his confidentiality interest because (F6) plaintiff took
active measures to limit access to and distribution of its information and (F4)
defendant entered into a nondisclosure agreement with plaintiff.

• The general public’s interest in the usability of publicly available information
does not apply in this case because (F15) plaintiff’s information was unique in
that plaintiff was the only manufacturer making the product.

On the other hand, arguably, plaintiff has also compromised some of the values
protected under trade secret regulation (italicized):

• Plaintiff has waived his property interest because (F27) plaintiff disclosed its
information in a public forum.

• Plaintiff has waived his confidentiality interest because (F27) plaintiff disclosed
its information in a public forum.

• Plaintiff’s interest in confidentiality is not legitimate because (F5) the nondis-
closure agreement did not specify which information was to be treated as
confidential.

• The general public’s interest in the usability of publicly available information
applies in this case because (F27) plaintiff disclosed its information in a public
forum.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 154 — #28

154 Computational Models of Legal Reasoning

The issues in the VJAP domain model in Figure 5.10 separate the full values
trade-offs in a case into subsets of local and of inter-issue trade-offs. For example,
the Dynamics case presents trade-offs in connection with effects on values protected
by trade secret law. Some of these trade-offs are local in the sense that they deal with
competing Factors concerning one issue. There are local conflicts in connection
with Maintain-Secrecy (F6 Security-Measures (P) and F4 Agreed-Not-To-Disclose
(P) vs. F27 Disclosure-In-Public-Forum (D)) and with Breach-Confidentiality (F4
Agreed-Not-To-Disclose (P) vs. F5 Agreement-Not-Specific (D)). Other value effects
trade-offs are inter-issue. For instance, plaintiff’s strength regarding the issue of Info-
Valuable (F15 Unique-Product (P)) could arguably compensate for its weakness in
the issues of Maintain-Secrecy or Breach-Confidentiality.

As explained in Section 5.7.4, the VJAP program resolves these trade-offs into con-
fidence values in an argument graph and aggregates them quantitatively using the
domain model in Figure 5.10.

5.7.3. VJAP Argument Schemes

VJAP models arguments that a legal rule should apply to a current case or not based
on analogies to prior cases. The rules are composed of ILCs. These ILCs are the
issues from the domain model of trade secret law (Figure 5.10). The analogies assert
that the current case and prior cases present the same local or cross-issue trade-offs
in value effects.

Employing schemes for constructing arguments by analogy based on shared value
effect trade-offs, the program can retrieve cases sharing the same local or inter-issue
trade-offs as a current case and use them in appropriate arguments.

For example, the argument scheme for an “Inter-Issue Trade-off from Precedent”
is a rule that specifies formally the preconditions for invoking the argument on behalf
of a side. Basically, a precedent case has to have been decided for that side, which
shares the same inter-issue trade-off in value effects as in the current case.

Figure 5.13 shows an excerpt of the program’s analysis of the Dynamics case con-
structed with this argument scheme. The underlined phrases in the text illustrate
where the argument scheme introduces trade-offs in effects on values protected by
trade secret law. Even though the VJAP program outputs texts that may be wordy and
repetitive, a matter for future work, its arguments compare favorably with the kind
of teleological argument Berman and Hafner espoused, as exemplified in Argument
II of Figure 3.12.

VJAP argument schemes also support making similar arguments with precedents
sharing local trade-offs in value effects with the current case, that is where the trade-
offs pertain to the same issue.

The comparison of theDynamics andNational Rejectors cases in Figure 5.13 illus-
trates how, in arguing that a case does or does not satisfy a legal rule requirement

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 155 — #29

Computational Models of Legal Argument 155

figure 5.13. VJAP Program output for Dynamics Case (excerpts) (Grabmair, 2016,
pp. 59–60)

such as Information-Valuable, the VJAP program can draw abstract analogies across
cases in terms of value-effect trade-offs.

Significantly, in theVJAPmodel, the fact that the precedent shares the same value-
effect trade-off with the current case does not necessarily mean that they share the
same set of factors. A given value effect can be caused bymultiple factors, as indicated
in Figures 5.11 and 5.12. Consequently, VJAP is drawing analogies at a more abstract
level than in previous models of legal reasoning with cases.

VJAP retrieves potential precedents by virtue of their sharing a tradeoff with the
case at bar. This involves two sets of value effects . . . , irrespective of which factors
constitute these effects. This is substantially different from (and arguably ‘deeper’
than) the precedent candidate retrieval on the factor level as employed in HYPO,
CATO and IBP. In other words, VJAP retrieves precedents that may be superficially
different in terms of the factors they share yet similar on a deeper level in terms of
their shared value effects. (Grabmair, 2016, p. 60)

Additional VJAP schemes enable arguments supporting or attacking an analogy.
“A party may point out a favorable factor that is present in the current case and
not in the precedent but still part of the [inter-issue] tradeoff argued about in the
analogy. The resulting argument is an a fortiori argument that this favorable excess
factor in the current casemakes the argument even stronger” (Grabmair, 2016, p. 61).
In a complementary way, the opponent may challenge the analogy “by pointing

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 156 — #30

156 Computational Models of Legal Reasoning

out that there exists a factor in the current case disfavoring the side arguing for the
analogy that is not part of the precedent but should still be part of the tradeoff, thereby
weakening the analogy” (Grabmair, 2016, p. 62).

5.7.4. VJAP’s Argument-based Predictions

The VJAP program constructs an argument graph for each case using its set of argu-
ment schemes (Grabmair, 2016, p. iv). Given a case c input as a list of all applicable
Factors, VJAP constructs an argument for the proposition that plaintiff’s trade secret
misappropriation claim in c will succeed.

The argument, represented in an argument graph structure, records the output of
an exhaustive search using backward chaining to apply all of the argument schemes
VJAP supports, including the schemes involving argument by analogy based on
shared local or inter-issue trade-offs. This means that for each issue, the program
checks all of the argument schemes for applicability. If a scheme applies, it is instan-
tiated and its premises are argued in a recursive application of the same procedure.
The output of each applicable instantiation of an argument scheme is an argument,
which is added to the argument graph structure. The process continues until the
program can find no new arguments whereupon the graph is complete (Grabmair,
2016, p. 48).

The argument graph represents all possible arguments about who should win the
case given the program’s domain knowledge. While the argument graphs are too
large and complex to show here, Figure 5.14 illustrates “a pattern schema for the
argument graphs that VJAP generates” in arguing about whether a plaintiff in c wins
an issue i from the domain model of trade secret law (Figure 5.10). The argument
graph comprises arguments, in oval-shaped nodes, related to propositions in rectan-
gular nodes, via diamond-shaped confidence propagation nodes (discussed below).
The edges connecting the nodes represent consequence and premise relations
(Grabmair, 2016, pp. 48–51).

As noted, the program produces the argument graph from the top down via
backward-chaining with the argument schemes represented as rules. When each
argument scheme’s preconditions are satisfied, the scheme adds the corresponding
argument extending the graph downward. As shown in Figure 5.14, the argument
graph goes “from arguments in the domainmodel at the top (collapsed to save space)
to deep arguments about leaf issues, tradeoffs, precedents, and analogy/distinction
arguments between precedent and the case at bar” (Grabmair, 2016, p. 50).

The argument graph is also bipartite. As suggested in the figure, the argument
scheme search process produces legal arguments for the plaintiff and defendant on
the issues in the case.

VJAP predicts the outcome of cases based on the argument graph. “It predicts
case outcomes using a confidence measure computed from the argument graph
and generates textual legal arguments justifying its predictions. The confidence

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 157 — #31

Computational Models of Legal Argument 157

figure 5.14. Statement and argument structure for reasoning about a Restatement issue
with trade-offs in VJAP (Grabmair, 2016, p. 51)

propagation uses quantitative weights assigned to effects of facts on values. VJAP
automatically learns these weights from past cases using an iterative optimization
method” (Grabmair, 2016, p. iv).

In other words, the argument graph serves as a quantitative graphical model to
predict the outcome of the case given the trade-offs in values in previous cases
and contexts. “The confidence values . . . represent the degree to which a state-
ment is argumentatively established, thereby giving the system a kind of ‘quantitative
confidence semantics’ ” (Grabmair, 2016, p. 17). The values are computed based on:

1. the weights associated with the effects that each factor has on each of the values
favoring either plaintiff or defendant.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 158 — #32

158 Computational Models of Legal Reasoning

2. the degree of confidence with which the premises of the argument can be
established, which in turn depends on the strength of the arguments pro and
con these premises.

As each argument scheme fires, extending the argument graph, it also outputs a
confidence function for calculating the relative effect of the argument it has just con-
tributed to the confidence in the overall argument. Each argument scheme has an
associated function for calculating a measure of the relative persuasive force of the
kind of argument it constructs. For inter-issue or local issue arguments from prece-
dent, the confidence measure is increased in relation to the strength of the analogy
between a precedent p and c and decreased to the extent they can be distinguished.

The VJAP program “predicts a case outcome by propagating confidence values
across the argument graph from learned weight parameters that represent the per-
suasive force of the effect a certain fact has on the applicable values” (Grabmair,
2016, pp. 25–6).

Once the graph is constructed, the system computes the confidence of [the state-
ment that plaintiff has a winning] claim by using the factor effect weight map
parameters to calculate the confidence of the leaf-nodes of the argument graph
(see the bottom row in [Figure 5.14]). These initial confidence values are then
propagated bottom up (or ‘feed forward’ in neural network terminology) using the
confidence functions of the argument schemes . . . and the proportional confidence
and propmax confidence functions for statements. (Grabmair, 2016, pp. 70–1)

The resulting value represents the program’s degree of confidence in an outcome
prediction. If greater than a threshold of 50%, it predicts that plaintiff wins, otherwise
it predicts defendant wins.

5.7.5. VJAP Program Evaluation

For purposes of evaluating the VJAP program, Grabmair employed a database of 121
trade secret cases (74 won by plaintiff, 47 by defendant). This was a subset of the IBP
dataset comprising the cases that have at least one factor for each of plaintiff and
defendant. Thus, these cases supported arguments balancing trade-offs.

The database was divided into training and test sets. For training, an argument
graph is constructed and a winner predicted for each case in the training set. Then,
the overall prediction accuracy is determined (Grabmair, 2016, p. 71).

In the training step, the system tries to learn optimal fact effect weight parameters to
maximize prediction accuracy. To accomplish this, the construction–propagation–
prediction pattern happens in a loop during which the system iteratively searches for
the optimal weight map using a technique called simulated annealing. (Grabmair,
2016, p. 71)

Simulated annealing is a technique for finding a global maximum of a function
such as confidence while avoiding local maxima that are not as great.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 159 — #33

Computational Models of Legal Argument 159

In simulated annealing . . . the training loop is run for a predefined number of iter-
ations and the parameters (i.e. the weights of the fact effects on values) are adjusted
at each iteration by replacing one random effect weight with a new random effect
weight, thus generating a “neighboring” weight map to the current one. This new
weight map is then evaluated through confidence propagation and overall predic-
tion accuracy. If the neighboring weight map is better or equally good, it replaces
the current weight map and the algorithm goes on into the next cycle. If the new
weight map performs worse, then the system will nevertheless make it the current
weight map with a small probability that is computed (using a “cooling schedule”
function) from the system’s “temperature,” which is a function of the remaining
and total number of cycles in the annealing process. The intuition is that, by occa-
sionally taking a “bad move,” the search is less likely to get stuck in local optima in
the multidimensional space of possible weight map parameters. (Grabmair, 2016,
p. 71)

The test step takes place after the annealing process is finished and the best weight
map has been found. In the test step, the VJAP program predicts the outcomes of the
test cases in “the same construction–propagation–prediction fashion by simply using
the trained effect weight parameters without any more optimization” (Grabmair,
2016, p. 72). It computes accuracy as the number of correctly predicted test cases
over the total number of test case predictions.

The program has predicted individual case outcomes in a LOO and a fivefold
cross validation (see Section 4.4.3). Each employed the database of 121 trade secret
misappropriation cases manually represented in terms of legal factors, and each case
involving at least a pair of conflicting factors (Grabmair, 2016, p. 74).

In the LOO, each training and test step was executed 121 times. Each time, a
different case became the test set of one case and the other 120 cases were the training
set. In the fivefold cross validation, the cases were assigned at random to five sets of
about equal size. On each run, a different set was the test set and the remaining four
were the training set.

The VJAP program achieved an accuracy of 79.3% in the LOO evaluation and
77.9% in the fivefold cross validation. These are compared to amajority class baseline
of 61.2%.

As compared with the results reported in Figure 4.7, this level of accuracy is lower
than IBP’s and higher thanCATO’s (which were assessed with a related database that
included 64 cases that did not have conflicting factors). In making the comparison,
however, one should take into account that the VJAP program does not abstain,
takes value-related information into account, and generates more legally realistic
arguments than either IBP or CATO. Moreover, it dispenses with the need in IBP
to define KO-Factors.

An advantage of the VJAP program over the value-based theory construction
approach of the AGATHA program (Chorley and Bench-Capon, 2005a,c), is that
VJAP employs a fine-grained representation with its focus on value trade-offs within

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 160 — #34

160 Computational Models of Legal Reasoning

and across legal issues. That finer grainmeans that its arguments can achieve a better
fit to the value trade-offs in past cases and better adjust for differences in the factual
contexts of the past cases and current problem. Also, the VJAP program generates
arguments that are intuitively acceptable to attorneys.

In generating arguments about whether rule requirements (intermediate legal
concepts) are satisfied in a given case and what the outcome should be, VJAP not
only applies rules and compares the problem with cases, but also reasons about
the values underlying the rule in question. It argues whether the rule’s require-
ments should be interpreted expansively, restrictively, or not at all in a given case
(Grabmair, 2016). In making these arguments, the program is guided by whether an
interpretation produces a decision that is coherent with value trade-offs established
through prior cases. The arguments it generates also serve as the basis for predicting
the case’s outcome.

Finally, Grabmair also constructed a variation of the VJAP system in which argu-
ments about a current case could only bemade using precedents decided at least one
year prior to the date of the current case. The goal of the so-called VJAP-timeline
was “to assess the system’s ability to reason with no or little precedent in some cases
and many possible precedent cases in others and to examine which precedents are
relied on the most by later cases” (Grabmair, 2016, p. 73).

In the evaluation, VJAP-timeline produced better prediction performance than
the full VJAP model in the LOO (84.3%) and cross-validation conditions (82.1%)
(Grabmair, 2016, p. 80). As far as known, VJAP timeline is the first computational
model of case-based legal reasoning or argument to restrict arguments to those
that are “temporally plausible given the chronology of the case dataset,” a realistic
constraint in legal practice.

5.8. computational model of evidentiary legal argument

Evidentiary legal argument refers to the arguments that a trier-of-fact in a trial or
hearing considers in deciding whether a side has provided persuasive evidence to
prove a conclusion that a legal rule’s factual requirements are satisfied. This is to
be distinguished from the kinds of legal arguments judges in motions or appellate
practice consider in deciding what a legal rule or concept means or in resolving
the legal implications of conflicting findings. The argument schemes and model
in Hypo, CATO, CABARET, GREBE, Theory Construction, and the VJAP model
focus on the latter.

Researchers in AI&Lawhave developed a number of formalmodels of evidentiary
legal argument and related argument schemes (see, e.g., Bex, 2011;Walker et al., 2011;
Verheij et al., 2015).

Walker’s argument model is of particular interest here because of its descriptive
focus. Walker systematically and empirically investigates evidentiary legal argumen-
tation and judicial decision-making. His model aims to describe in detail the actual

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 161 — #35

Computational Models of Legal Argument 161

reasoning of triers of fact as it appears in their published decisions. Although his
argument model does not (yet) include a program to analyze new cases and generate
predictions and arguments, it does provide schemas of evidentiary legal arguments.

The work involves the Vaccine/Injury Project (V/IP) Corpus, developed by the
Research Laboratory for Law, Logic and Technology (LLT Lab), Maurice A. Deane
School of Law at Hofstra University. The corpus comprises Court of Federal Claims
decisions as to whether claims for compensation for vaccination-related injuries
comply with the requirements of the National Vaccine Injury Compensation Pro-
gram (NVICP). In these cases, Special Masters decide which evidence is relevant to
which issues of fact, evaluate the plausibility of evidence in the legal record, organize
evidence and draw reasonable inferences, and make findings of fact (Walker et al.,
2011).

Under the NVICP, a claimant is compensated only if a vaccine caused the injury.
For policy reasons, however, the concept of causation is specially defined so as to
set a lower standard than that for purely scientific causation. Under Althen v. Secr.
of Health and Human Services, 418 F. 3d 1274 (Fed. Cir. 2005), a petitioner must
establish, by a preponderance of the evidence, that:

1. a “medical theory causally connects” the type of vaccinewith the type of injury;
2. there was a “logical sequence of cause and effect” between the particular

vaccination and the particular injury; and
3. a “proximate temporal relationship” existed between the vaccination and the

injury.

The corpus contains all decisions in the first two years of applying the Althen test
of causation-in-fact (i.e., 35 decision texts, typically 15–40 pages per decision) (Walker
et al., 2011).

Walker’s model of evidentiary legal argument is called the Default Logic Frame-
work. A DLF argument diagram represents applicable statutory and regulatory
requirements as a “rule tree,” that is, a tree of authoritative rule conditions, and
chains of reasoning in the legal decision that connect evidentiary assertions to the
Special Master’s findings of fact on those rule conditions (Walker et al., 2011). The
statute establishing the rule system for the NVICP exhibits a typical logical structure
found in statutes in the United States (Walker et al., 2015b).

Figure 5.15 shows a partial rule tree for vaccine decisions showing the three con-
ditions of the Althen rule for proving causation. Each rule tree is a graph with the
root node at the top representing the overall issue that the petitioner needs to prove,
namely entitlement to compensation under the NVICP. A child node represents a
condition for proving the proposition in the connected parent node. Sibling child
nodes are connected to their parent node by the connectors, AND,OR, UNLESS, or
RULE FACTOR. The connector AND functions as a logical conjunction of neces-
sary conditions, andOR functions as a logical disjunction of independently sufficient
conditions. The connector UNLESS functions as rebuttal: if the defeating condition

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 162 — #36

162 Computational Models of Legal Reasoning

figure 5.15. DLF partial rule tree for vaccine decisions, showing three causation
conditions of Althen (see Walker et al., 2011)

is true, then the conclusion is false. The connector RULE FACTOR indicates that
the truth of the condition tends to make the conclusion more or less probable. In
making a finding, a fact finder should take into account the “rule factor” conditions,
but the rule does not specify how to assign a truth value. A propositional node in a
rule tree may be assigned a value of “true,” “undecided,” or “false.” In a particular
case, the findings of fact at the leaf nodes influence the truth value of the root node
proposition (Walker et al., 2011).

Figure 5.16 illustrates a chain of reasoning extracted from the decision of the Stew-
art4 case that connects evidence in the case to the Special Master’s findings of fact
for the first requirement of the causation rule in the rule tree.

In the DLF model, logical and plausibility connectives are used to connect the
Special Master’s findings of facts to the propositions in the rule tree. Evidence fac-
tors model the Special Master’s stated reasons for a conclusion and assign them the
plausibility value actually assigned by the fact finder (Walker et al., 2011). The DLF
model for a decision captures the trier of fact’s reasoning for why the evidence proves
or fails to prove a legal rule’s antecedents. In Figure 5.16, four evidence factors are
identified, all of which support the evidentiary finding that the Althen rule’s first of
three requirements has been satisfied.

4 Stewart v. Secretary of the Department of Health and Human Services, Office of Special Masters,
No. 06-287V, March 19, 2007.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 163 — #37

Computational Models of Legal Argument 163

figure 5.16. DLF extracted reasoning chains (excerpts) (see Walker et al., 2011)

Walker’s LLT Lab has also begun to classify the types of arguments they are
finding in the V/IP Corpus (Walker and Vazirova, 2014). They can identify deci-
sions involving, say, the first condition of Althen (that “a medical theory causally
connects” the type of vaccine to the type of injury) and identify all the types of
arguments employed. For instance, in a sample of 10 representative decisions, in
which five were decided for the petitioner and five for the government, there appear
under this Althen condition a total of 56 arguments based on the connective EVI-
DENCE FACTOR (19 arguments in decisions for the petitioner, 37 in decisions for
the government) (Walker and Vazirova, 2014). The researchers suggest classifying

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 164 — #38

164 Computational Models of Legal Reasoning

such arguments by types of inference (deductive, probabilistic/statistical, or scien-
tific/medical), types of evidence (legal precedent, legal policy, medical/scientific
study, case report, fact testimony), and patterns based on evidentiary discrepancies
(expert vs. expert, inadequate explanation).

Crucially, Walker’s descriptive model addresses real (not toy) examples of evi-
dentiary arguments, and it stays close to the texts of the decisions it models. As
will be explained in Parts II and III, the argument schematization and level of
detail are instrumental in enabling a novel approach to extract argument-related
semantic information from case texts and use it to achieve conceptual AR and cog-
nitive computing. Specifically, the DLF model plays important roles as a basis
for identifying the argument-related information (Section 6.8), extracting find-
ings of fact and cited legal rules (Section 10.5), eliciting users’ argument-related
information needs (Section 11.5.5), and formulating and testing legal hypotheses
(Section 12.4.1).

5.9. computational models of legal argument as a bridge

If computational models of argument are a culmination and unifying framework of
AI & Law research, what role will they play in CCLAs ? Potentially, computational
argument models like the VJAP andDLFmodels can serve as a bridge between legal
texts and the answers humans seek.

Consider, for instance, the sample queries in Table 5.3; they illustrate sensible
questions humans might ask some (hypothetical) legal apps or websites covering
the family law domain in the argument model examples at the beginning of this
chapter. Intuitively, computational models of argument (with legal rules, legal cases,
and argument schema) could play a major role in answering these questions in a
realistic way.

In determining exactly what that role will be, the following questions need to be
addressed:

1. Will a model enable a program to deliver answers to the questions that users
can rely on? Or, will the model help systems like Watson or Debater to iden-
tify texts with relevant answers and tailor the extracted information to a user’s
needs? To put it another way, what kind of bridge between texts and answers
will the argument model be, a direct and sufficient route in itself, or a guide
for humans to construct their own answers?

2. The answers to users’ queries like these lie in the legal texts of the statutes
and related cases. How will information get from the texts into a computer
program in a form that it can use to answer a question?

3. How will the program understand users’ questions and gather background
information?

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 165 — #39

Computational Models of Legal Argument 165

table 5.3. Can CMLAs serve as a bridge between legal texts and answers humans seek?

Asker Askee Question

Martha legal-advice.com Doesn’t George have to support me?
Martha’s attorney legal-ir.com What is the statutory argument that

George has a duty to support Martha?
George’s attorney legal-ir.com Are there any cases against the argument

that George has a duty to supportMartha?
Martha’s attorney eDiscovery program Do George’s and Martha’s emails support

that they had a parental relationship?
Judge’s law clerk legal-ir.com What are the strongest arguments for and

against the proposition that George has a
duty to support Martha?

Legislative clerk legal-ir.com Has § 1601 been adequate to protect the
state’s interest in enforcing obligations of
support?

Law student taking
Family Law course

Intelligent tutoring
system

How do I determine whether George has
a duty to support Martha?

As noted in Chapter 1, the answers to legal queries often require explanation
and argument. Even answering Martha’s question, “Doesn’t George have to support
me?,” may involve arguments. Although she might expect legal-advice.com to give
a simple “yes” or “no” answer, realistically the system should respond in a more
stereotypically lawyer-like way: “It depends.” The system could then offer an expla-
nation of at least some of the contingencies on which the answer depends, such as:
“Is George an ancestor of Martha?” “Would being obligated to support Martha cause
George some undue hardship?” “Did George and Martha ever have a parent–child
relationship?” “How long would the support for Martha be needed?”

The relevant contingencies will need to be represented in some way so that the
system can “know” to elicit the answers. There seem to be at least three ways to
accomplish this. The first is the expert systems or BNA approach: The knowledge is
represented manually in rules whose conditions capture the various facts that could
make a difference to a conclusion that there is an obligation of support. Guided
probably by backward chaining, the rule engine would inquire regarding the possible
facts, as in Waterman’s program of Section 1.3.1 or the BNA program of Section 2.3.4.

The second way uses a computational model of legal argument. The knowledge
could be represented manually with defeasible legal rules whose critical questions
identify the contingencies. Given any legal conclusion and the appropriate argu-
ment schemes, the system searches for and identifies possible counterarguments that
exploit the contingencies on which the defeasible legal conclusion depends. The
possible arguments drive the search via the critical questions for failed assumptions,
exceptions, or exclusions that affect any conclusions. Based on these arguments, the

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 166 — #40

166 Computational Models of Legal Reasoning

system could offer to present the contingencies to Martha and explain why they
matter.5

Regarding question (1), in these two approaches the model constructs the answers
to the question directly. The difference lies in the way they draw inferences. The
BNA program or expert system applies predicate logic using classical negation and
negation by failure to attempt to prove a conclusion regarding support. In contrast,
the argument system performs inferences with defeasible legal rules based on the
argument model semantics. The system would, perhaps, construct a rule/argument
graph, generate legal rule-, factor-, or case-based arguments as in Carneades, and
aggregate the arguments qualitatively or quantitatively as in VJAP.

The third way is a Watson/Debater-type approach. Here the model does not
answer the question directly, at least not at the start. Instead, types of argument-
related information contained in the model guide the system in identifying texts
that answer the question. The argument-related information itself is contained in
a corpus of texts including, perhaps, articles from law reviews or other publications
concerning the circumstances giving rise to a legal obligation of support. This means
identifying texts that have not only answers but also explanations and arguments for
an answer and a means to select the most relevant explanations and arguments given
the problem the user is trying to solve. One might present Debater with a “topic,”
for instance, “Under German family law, one person (A) can have a legal obliga-
tion to support another person (B).” Debater would scan the documents in order to
detect claims relevant to the topic and organize them into an argument pro or con
similar to Figure 1.4. The system would order the documents in terms of its confi-
dence in their relevance and highlight the passages that most directly address the
query; the user would be left to select, read, and apply their advice to his/her own
circumstances.

The third approach depends on a system’s ability to understand the user’s query
and at least some of the legal semantics of the texts. Let’s assume for the moment
that the former can be addressed and focus on the latter.

The system needs to be able to identify some argument-related information in
the texts, such as passages involving arguments on the topic of interest, the roles of
parties in those arguments and some relevant features of the fact situation that impact
the outcome of the argument such as legal factors. It would also need to identify
some legal complications such as differences between the jurisdiction discussed in
the article and the German family law contexts. (See the discussion of the Toronto
Blue Jays jurisdictional issue in Chapter 1.) With this information, a system could
conceivably construct a mapping from the retrieved texts to the current context and
tailor its output to the context of the questioner, such as Martha, her attorney, or
George’s attorney.

5 For an interesting proposed hybrid expert system with defeasible legal rules for reaching family law
solutions in the best interests of children (see Araszkiewicz et al., 2013).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 167 — #41

Computational Models of Legal Argument 167

When the users’ questions becomemore specific about the kinds of arguments the
user seeks, more may be required than the Watson/Debater approach has provided
so far. For example, Martha’s or George’s attorneys may seek arguments involving
statutory rules or a specific rule like §1601, arguments based on cases or on a specific
case like the Mueller case, or such arguments but where the duty of support was
upheld or defeated. Users may seek arguments where the lack of a parent–child
relationship defeated an obligation of support, arguments defeating such arguments,
or arguments where email evidence was used successfully to show the existence of a
parental relationship.

For responding to queries like these, information like that contained in compu-
tational models of legal argument would seem necessary. The kind of argument-
related information associated with CMLAs could help a Debater-type system
identify structural and semantic features of arguments in texts, which, in turn, can
identify types of arguments, such as arguments about the meanings of statutory
requirements or arguments about evidence. The system could then select the most
relevant materials for constructing answers and arguments pro and con. It could rec-
ognize, retrieve, and highlight relevant arguments made previously in the cases and
identify texts with contrary conclusions indicating possibly useful counterarguments.

For queries seeking the strongest arguments for and against George’s duty of
support or predicting the outcome, CMLAs would seem necessary to take substan-
tive criteria into account. If legal factors like Never-had-parent–child-relationship
or Has-already-provided-much-support are to be identified automatically in texts
and employed in constructing arguments and making predictions, a computational
model of legal argument would be instrumental. Similarly, a CMLA like the VJAP
model (Section 5.7) could help the system identify and reason with legal factors in
responding to the law and legislative clerks’ queries concerning decisions’ effects on
underlying values.6 Finally, in answering the Family Law student’s question con-
cerning how to analyze George’s duty to support Martha, Debater could probably
find a “how to” article, but only a CMLA could engage the student in practice
arguments.

The arguments will thus be generated by combining Debater-like extraction of
prior arguments from texts in a corpus with a computational model of argument
making predictions, constructing arguments tailored to a problem, and exploring
variations. At least, that is the goal.

With respect to question (2), how information will get from the texts into a com-
puter program, the Watson/Debater approach has the considerable advantage over
the other two of avoiding manual knowledge representation. Assuming the docu-
ments exist, it can find a document whose propositions relate to the topic pro or

6 The features in the SCOTUS project (Section 4.4) probably cannot be extracted directly from the
texts of decisions and require extensive feature engineering. The features employed in Lex Machina
can be extracted from texts, but as far as known, they do not model substantive features of the cases.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C05” — 2017/5/27 — 11:21 — page 168 — #42

168 Computational Models of Legal Reasoning

con and its ability to do so does not depend on some knowledge engineer’s having
anticipated a defeasible legal rule’s critical question on each and every point.

Now, as to question (3) above: How will the program understand users’ ques-
tions and gather background information? This is a significant technical challenge
because it involves the system understanding the problem the user hopes to solve
as well as the context, including some of the considerations that can complicate
a solution. This book does not offer a general solution to this problem of com-
puter understanding. Instead, it addresses the challenge in a way that may suffice for
developing legal apps that can help humans answer questions like those in Table 5.3.

This book identifies a kind of problem, helping users test legal hypotheses, that
constrains the challenge of understanding users’ queries but that is still a robust and
useful example of cognitive computing (Section 12.4). In order to assist in under-
standing users’ queries, it outlines the design of a user interface that employs the
resources of argument models like DLF and CMLAs like VJAP (see Sections 11.5.5
and 12.5.3). These resources include the language of argument-related types and
graphical representations associated with the roles sentences play in legal arguments,
and semantic features of legal arguments in particular domains such as legal factors.

ML will play a number of roles. The systems will learn to extract semantic features
that help it to improve relevance selection and assist humans, such as structural cues,
argument roles of propositions, and substantive features like legal factors. ML will
help systems learn the weights of features in assessing confidence in its understand-
ing of a question or in its answer, explanation, or argument. Finally, the systems will
also learn by associating humans’ arguments with success or failure and from feed-
back associated with questions, answers, and arguments that users report best address
their problems.

Part II continues to explain how computational models of argument will serve as
a bridge between legal texts and answers focusing particularly on the DLF of Vern
Walker. Chapter 6 explains how to represent concept and relation types that corre-
spond to those in rule trees and the DLF chains of reasoning. Annotating legal texts
in terms of such concepts and relations is a key to connecting the texts and compu-
tational models of argument. After introducing legal information retrieval and ML
techniques, Part II explains how to annotate the texts with argument-related concep-
tual information. Part III explains how to use the information and ML to support
conceptual retrieval of legal documents based on the arguments they contain, and
how to apply argument-related information from other CMLAs potentially to pre-
dict outcomes and make new legal arguments. At each step, the goal is objectively
to measure the effectiveness of the techniques, for example by comparing the con-
ceptual information retrieval system’s rankings of relevant documents with that of
current legal IR systems.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.005
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:20:06, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.005
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 169 — #1

part ii

Legal Text Analytics

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:12:54, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 170 — #2

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:12:54, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 171 — #3

6

Representing Legal Concepts in Ontologies and
Type Systems

6.1. introduction

As Part I indicates, knowledge representation has been a key focus of AI & Law
research and a key challenge for implementing systems robust enough to serve as
real-world legal practice tools.

Ontologies help to meet that challenge. An ontology specifies the fundamental
types of things or concepts that exist for purposes of a system and sets out the relations
among them.

After introducing some basic information about ontologies, this chapter surveys
some historically influential legal ontologies and explains some modern techniques
for constructing ontologies semiautomatically. It then turns to ontological supports
for statutory reasoning and for legal argumentation. In connection with the latter,
an extended example illustrates ontological supports for making arguments with a
small collection of cases.

Finally, the chapter introduces a specialized kind of ontology, “type systems,”
which are a basic text analytic tool. Type systems support automatically marking-
up or annotating legal texts semantically in terms of concepts and their relations.
They will play key roles in conceptual legal information retrieval and in cognitive
computing.

This chapter addresses the following questions. What is a legal ontology and
how are legal ontologies used? What is semantic annotation? What are text anno-
tation pipelines and what role does a type system play? What is a UIMA framework?
How are legal ontologies and UIMA type systems constructed? How can developers
of legal type systems take advantage of existing legal ontologies and of ontologies
already developed for medicine, or for other real world domains that have legal
implications?

171
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 172 — #4

172 Legal Text Analytics

figure 6.1. Sample ontology for contract formation

6.2. ontology basics

Despite its metaphysical connotations, the term “ontology” is not quite so imposing
in the context of computational models. An ontology is an “explicit, formal, and gen-
eral specification of a conceptualization of the properties of and relations between
objects in a given domain” (Wyner, 2008). In other words, ontologies make concepts
in a domain explicit so that a program can reason with them.

For example, Figure 6.1 shows a simple ontology for the legal concept of contract
formation. This kind of an ontology might have been useful for Ann Gardner’s first-
year contracts problem analyzer (Section 1.4.2) and captures concepts and relations
described in Gardner (1987, pp. 121–3) such as “Manifestation of mutual consent”
and “Acceptance by verbal promise.”

Legal ontologies include some standard relations among concepts, represented
by labeled links, two of which are illustrated in Figure 6.1:

– is-a: class membership expression, for example, an “Acceptance by verbal
promise” is-a “Acceptance by promise.”

– has-as-parts: indicating a part-whole relationship, for example, the concept of
“Offer and acceptance re particular individuals” has-as-parts “Acceptance by
promise,” “Acceptance by performance,” and “Acceptance by silence.”

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 173 — #5

Representing Legal Concepts in Ontologies and Type Systems 173

Other standard relations not illustrated in the figure include:

– has-function: indicating a functional role of the parent, for example, “an
organization has social functions” (Breuker et al., 2004, p. 267).

– has-parent, has-child: indicating relative position in a hierarchy, for example,
“Base-level Factors have Intermediate Legal Concerns as parent factors; Inter-
mediate Legal Concerns have Intermediate Legal Concerns or Legal Issues as
parent factors” (Wyner, 2008, p. 368).

The example of has-parent links would be relevant in an ontology of the conceptual
components of a factor hierarchy as in CATO (Section 3.3.2).

Discussions of ontologies typically distinguish between high-level ontological
frameworks and lower-level domain ontologies (Breuker et al., 2004; Breuker and
Hoekstra, 2004).

An ontological framework specifies fundamental concepts. For instance, one
could extend the legal ontology in Figure 6.1 to the left to provide a framework
of more fundamental concepts of contract law and of law generally. In addition to
“Contract formation,” one might include “Contract performance” and “Contract
non-performance,” all as parts of a superconcept, “Contractual obligations.” That
concept, in turn, might have sister concepts, “Obligations in Tort,” “Obligations
under Criminal Law,” each of which has-parent “Legal obligations.”

One might also extend the ontology toward the right to create a domain ontology,
that is, a specification of the objects, predicates, and relations for a given domain
such as contract formation. For instance, one might identify “Exchange of tele-
grams,” “Completion of purchase order,” “Oral statement of agreement” as some
of the means for performing “Acceptance by verbal promise,” perhaps linking them
with has-function links to the parent. Or one might specify some ways of performing
“Offer and acceptance re general public” via, say, “By advertisement” or “By offering
a reward.”

The role of an ontology is to provide a conceptual vocabulary for representing
the knowledge that a computer program can process. It “define[s] and deliver[s] the
building blocks for the construction or interpretations of actual situations and histo-
ries: partial models of real or imaginary worlds” (Breuker et al., 2004). For example,
if a program encounters an exchange of telegrams, based on information contained
in the ontology of Figure 6.1 as extended into a domain ontology for contract forma-
tion, it has a basis for concluding that the scenario deals with “Offer and acceptance
re particular individuals” rather than “Offer and acceptance re general public,” a
topic to which other legal rules apply.

In this way, ontologies make assumptions about concepts and relations explicit so
that a program can reason with them to some extent. They also enable expanding
queries to legal information retrieval systems. With respect to a query concerning
offer and acceptance re particular individuals, a case involving an exchange of tele-
grams might be relevant to one involving an oral statement of agreement. In the

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 174 — #6

174 Legal Text Analytics

world of e-commerce via the Semantic Web, ontologies also play a role in facilitat-
ing exchange of information and queries across multiple databases, perhaps helping
an automated purchasing agent to align, to the extent possible, civil law and common
law concepts employed in a database of international purchase orders.

6.3. sample legal ontologies

Two sample legal ontologies, the e-Court ontology and van Kralingen’s frame-based
ontology, illustrate the variety of roles ontologies play in knowledge representation
as well as two distinction approaches to designing ontologies.

6.3.1. The e-Court Ontology

A team at the University of Amsterdam developed the e-Court ontology as part of
a European project for semantically indexing archived legal documents, includ-
ing audio/video recordings of depositions and hearings in criminal law actions.
The ontology provides a structured vocabulary for describing documents and their
content in the form of metadata, that is, data about data.

The metadata include non-semantic information about the documents such as
author, date, authorization, type (for example, audio, video, or transcript), name,
and identifier of the criminal case, as well as other structural information determined
by local court procedures. The metadata also include some semantic information
characterizing a document’s content, for example, case descriptions, such as oral
testimony in deposition or hearings, and topics from criminal procedure law, for
instance, from the indictment or trial. Semantic metadata also include keywords
indicating the type of crime involved, such as murder or manslaughter, or the
weapon used in a particular criminal case (Breuker et al., 2004; Van Engers et al.,
2008).

The metadata tags are organized in an index that users can browse to find doc-
uments. Users can also include tags as semantic constraints in queries for targeting
documents. The IR system can expand user queries based on links in the ontology
to subsuming or subsumed classes of semantic tags. For instance, “killing” could
be expanded to “murder” and “manslaughter.” “Glock 23” could be generalized to
“weapon.”

Figure 6.2 shows some excerpts of the e-Court ontology whose relevance to the
criminal trial information retrieval task is fairly clear. The e-Court ontology was
based on an ontological framework called the LRI-Core ontology (Breuker and
Hoekstra, 2004). In Figure 6.2, the boldface terms are terms from LRI-Core. The
non-boldface terms are part of a domain ontology for criminal procedure law in the
Netherlands called CRIME.NL.

Ontologies standardize the representation of knowledge about legal concepts.
This standardization includes constraints on the relations among the various types or

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 175 — #7

Representing Legal Concepts in Ontologies and Type Systems 175

figure 6.2. Excerpts from e-Court ontology showing expansion of “reasoning object,”
“agent,” and “juridical role.” Links are is-a unless otherwise noted (see Breuker and
Hoekstra, 2004; Breuker et al., 2004; Van Engers et al., 2008)

concepts. For instance, in the LRI-Core ontology, “roles” are taken by “persons” who
are “agents.” Although Figure 6.2 does not suggest these constraints through cross
links or otherwise, when constructing a knowledge base according to an ontology,
formal rules embody these constraints.

Some of the above ontological relationships may support another function of
ontologies: inheritance of features. Inheritance achieves a certain economy of rep-
resentation. A subconcept of a concept is endowed automatically with the properties
of the concept. An is-a relationship assumes that “the class of objects and the prop-
erties of the objects in the class fully and explicitly define the class. One specifies
subclasses which inherit properties from the superclass while being further defined
in their particular properties” (Wyner, 2008, p. 363).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 176 — #8

176 Legal Text Analytics

For instance, in the e-Court context, by virtue of the is-a relationships in
Figure 6.2, the concept of an “offender” inherits the properties of the concepts of
“defendant,” “judicial role,” and “juridical role” (Breuker et al., 2004, p. 257). As
the authors of the LRI-Core ontology put it,“properties of the concepts of the foun-
dational ontology are inherited by the core ontology via the is-a ‘backbone,’ so not
surprisingly a legal role has all properties of a role, etc.” (Breuker andHoekstra, 2004).

Incidentally, the LRI-Core ontology was subsequently incorporated into the Legal
Knowledge Interchange Format (LKIF) (Gordon, 2008a). LKIF includes an imple-
mentation of the core ontology of basic legal concepts in the Ontology Web
Language (OWL), an ontology that computer programs can read and process auto-
matically, for instance, in conducting transactions via the SemanticWeb (seeWyner,
2008, p. 363). For example, theGerman family law rules in the examples of argumen-
tation with defeasible legal rules in Section 5.3 can be represented conveniently in
LKIF and processed by the Carneades system.

6.3.2. van Kralingen’s Frame-based Ontology

Some ontologies employmore elaborate facilities for representing information about
concepts. They specify frames with slots to represent a concept’s standard features.
The frames are like templates or forms, and the slots are like the blanks in the forms
to be filled in.

For example, Table 6.1 shows van Kralingen’s classic frame-based ontology for
representing legal entities including norms (that is, legal rules), concepts, and acts.
Each frame’s slots specify a place for representing the values of standard features of
any given legal norm, concept, or act. The slot fillers represent particular values of
those features for instantiations of legal norms, concepts, or acts (see Van Kralingen
et al., 1999, pp. 1135–8, 1150–3).

It happens that the frames illustrated in the figure are to be applied to repre-
sent a college library regulation. The sample filled-in slots at the right side contain
the detailed library rule information. For instance, the instantiated norm provides
that the borrower shall return the book by the due date, the concept “borrowed” is
defined, and the act of returning the book by the date due is described.

As knowledge representation tools, frames specify semantic constraints for a given
domain, in part by defining the types of things that can serve as fillers for a particular
slot. For instance, the “legal modality” slot of the norm frame in Table 6.1 specifies
four types of legal modalities: ought, ought not, may, or can. The concept frame’s
type slot specifies four types: definition, deeming provision, factor, or meta. The
“temporal aspects” slot of a legal act frame could specify constraints on the types of
fillers that the slot will accept such as dates and times. If one tries to enter types of
values different from those specified, the program would object.

In order to enforce the constraints, the slot values of frames can include tests
with which a program can assess whether a concept applies. For example, in the

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 177 — #9

Representing Legal Concepts in Ontologies and Type Systems 177

table 6.1. Three ontology frames for legal norm, concept, and legal act with slot fillers
for library regulation (see Van Kralingen et al., 1999, pp. 1135–8, 1150–3)

“Norm” element Description IC Library Regulations Example

Norm identifier used as point of reference for the norm “norm-2”
Norm type e.g., norm of conduct or norm of

competence
Norm of conduct

Promulgation source of the norm IC Library Regulations article 2
Scope range of application of the norm IC Library Regulations
Application
conditions

conditions under which norm applies Subject has borrowed a book

Subject person to whom norm addressed Borrower
Legal modality ought, ought not, may, or can Ought to
Act identifier used as reference to a separate act

description
“return-book-by-date-due”

“Concept”
element

Description IC Library Regulations Example

Concept
identifier

used as point of reference for the concept borrowed

Concept concept described borrowed (Person, Book)
Concept type definition, deeming provision, factor, or

meta
definition

Priority weight assigned to a factor, if applicable NA
Promulgation source of concept description {(knowledge-engineer)}
Scope range of application of concept description {IC Library Regulations}
Conditions conditions under which a concept is

applicable
true_from(T, registered(Person, Book))
and true_from(T, possession(Person,
Book))

Instances enumeration of instances of the concept always_false

“Act” element Description IC Library Regulations Example

Act identifier used as point of reference for the act “return-book-by-date-due”
Promulgation source of the act description IC Library Regulations article 2
Scope range of application of the act description IC Library Regulations
Agent individual, set of individuals, aggregate, or Borrower

conglomerate
Act type basic acts or acts specified elsewhere Return
Means material objects used in the action or more

specific descriptions
Manner way in which the action has been

performed
Temporal aspects absolute time specification Book should be returned by the date due
Spatial aspects location where the action takes place
Circumstances situation under which the action

takes place
A book has been borrowed

Cause reasons to perform the action
Aim goal visualized by the agent
Intentionality state of mind of the agent
Final state results and consequences of an action

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 178 — #10

178 Legal Text Analytics

frame shown in Table 6.1 of the concept “borrowed,” the “conditions” slot includes
the following tests: “true_from(T, registered(Person, Book)) and true_from(T, pos-
session(Person, Book)).” Using these tests, a program could assess the applicability
of the concept “borrowed.”

The instantiated frames also interrelate: the norm frame, norm-2, employs a con-
cept, “borrowed,” which is defined in the borrowed concept frame, and it refers to
an act, “return-book-by-date-due” described in the action frame. In a frame-based
ontology, these interrelations are implicit conceptual links enforced by ontological
constraints on the type of concepts that can be used to fill the slots.

Given a legal ontology’s functionality in representing knowledge in a manner a
computer program can apply, as illustrated in these samples, one can appreciate its
usefulness in building a legal application. The ontology defines classes of objects,
specifies their possible features and attributes, enforces constraints on feature val-
ues, and specifies the relationships among objects. Using frames and slots, one can
create instances of the classes and populate a knowledge base. This can support not
only conceptual information retrieval, as in the e-Court ontology, but also some
reasoning, as illustrated in the library regulation instantiation of van Kralingen’s
frame-based ontology. To enable additional reasoning, one can apply, for instance,
“production rules to elements of the knowledge base to support inference” (Wyner,
2008, p. 363) or the methods of case-based argument discussed in Part I.

6.4. constructing legal ontologies

Legal ontologies have traditionally been constructed by hand but, increasingly, NLP
and ML provide automated assistance.

Ontologies need to reflect human expert knowledge concerning which concepts
and relations should be included to enable a system to perform its ultimate tasks.
Automated approaches, however, can identify apparently important concepts and
relations in a corpus based on statistical analysis. Automation can then flag the can-
didate concepts and relations for consideration by the human experts. The human
experts can decide whether to include the candidates and can relabel the nodes and
arcs for inclusion in the ontology.

The Drafting Legislation with Ontology base Support (DALOS) ontology
(Figure 6.3) is an example of this approach (Francesconi et al., 2010). The ontology
was designed to support legislative drafting across EU member states and languages
focusing on the domain of consumer protection. The goal was to provide a taxonomy
of types of normative provisions dealing with consumer protection but also a con-
ceptual vocabulary for describing generic situations involving consumer protection
across two languages, English and Italian.

The Ontological Layer in the top half of Figure 6.3 illustrates this concep-
tual vocabulary, including such terms as Supplier and Consumer, some types of

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 179 — #11

Representing Legal Concepts in Ontologies and Type Systems 179

figure 6.3. Ontology in the DALOS system (excerpts) (see Francesconi et al., 2010)

agents in a commercial transaction. Legal domain experts constructed the Onto-
logical Layer manually in a top-down manner and have specified the relationships
between them. For instance, Consumer and Supplier both involve being in a Com-
mercial_transaction. Commercial_transaction HasAgentRole with Supplier and with
Consumer, both of which are a SubClassOf Legal_role. Other relationships include
HasObjectRole and HasValue.

How are such entities as commercial transactions, suppliers, and consumers
referred to across the whole range of consumer transactions such as in sales contracts
and credit agreements? To answer that, the researchers conducted a semiautomatic,
bottom-up extraction of the terminology from corpora of domain documents in
different languages using NLP technologies combined with ML techniques. The
results are illustrated in the Lexical Layer in the bottom half of Figure 6.3.

In the Lexical Layer, terms are linked by a few types of linguistic relationships:
hyponyms, equivalents, and fuzzynyms. A “hyponym” is word with a more spe-
cific meaning than a general term applicable to it. For instance, the English term
“supplier” is linked to its hyponym, “supplier of goods,” as well as to its equiva-
lent in Italian, fornitore. A “fuzzynym” is a “wider associative relation linking words
which may share salient features … without being necessarily semantically simi-
lar” (Francesconi et al., 2010, p. 101). As a statistical matter, the terms “supplier”
and “consumer” appear frequently together in the documents and are treated as
fuzzynyms.

The Lexical Layer is constructed from a list of terms extracted automatically
from a corpus of English and Italian consumer law documents, including legal and

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 180 — #12

180 Legal Text Analytics

regulatory provisions as well as case law (Francesconi et al., 2010, p. 105). In the
extraction process, the texts in the corpus are processed to identify parts of speech
(POS) and parsed to identify certain shallow grammatical relationships of interest:

– noun (e.g., creditor, product)
– adjective–noun (e.g., current account, local government)
– noun–noun (e.g., credit agreement, product safety)
– noun–preposition–adjective–noun (e.g., purchase of immovable property, prin-

ciple of legal certainty)
– noun–preposition–noun–noun (e.g., cancellation of credit agreement, settle-

ment of consumer dispute) (Francesconi et al., 2010, p. 106).

Then, statistical measures are applied to identify the more salient terminological
units. For instance, the tf/idf 1 measure, a measure proportional to the frequency
of the term in a document and inversely related to the number of documents in
the corpus in which the term is found, is computed for a term and compared to an
empirically determined threshold. The term is selected for inclusion in the ontology
if its tf/idf measure is high enough (Francesconi et al., 2010, p. 107).

The chosen terms are then collected into hyponyms or fuzzynyms based on the
internal structure of the noun phrases. For instance, “time-share contract,” “credit
contract,” and “consumer contract” were classified as co-hyponyms of the general
term “contract.” The terms and their relations are then added to the Lexical Layer
as in the bottom half of Figure 6.3.

The final step is refining the Ontological and Lexical Layers and incrementally
linking concepts between the two layers. Human experts perform this step, but they
are assisted by the information now presented in the Lexical Layer. The hyponyms
and fuzzynyms represent the system’s best statistically based guess at which terms
and “fine-grained relations … should be expertly evaluated for inclusion into the
ontology, and linked to existing ontology elements bymeans of existing or new object
properties” (Francesconi et al., 2010, p. 111).

In the Lexical Layer, the semantic relatedness of the fuzzynym relationship
between, for example, the terms “supplier” and “consumer” leads the human expert
to consider assigning an explicit semantic interpretation at the Ontological level, for
example, an agent link, to the Commercial_transaction concept, and subclasses of
the Legal_role concept (Francesconi et al., 2010, p. 102).

Interestingly, in DALOS, the documents aremultilingual. Cross-language equiva-
lences are thus semiautomatically identified with a combination of statistical analysis
and human expert confirmation. For instance, as suggested in Figure 6.3, the Ital-
ian term, fornitore may first become associated with its English equivalent Supplier
through a fuzzynym relationship for which a human expert then provides semantic
confirmation.

1 Term frequency (tf)/inverse document frequency (idf).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 181 — #13

Representing Legal Concepts in Ontologies and Type Systems 181

6.5. ontological support for statutory reasoning

The DALOS approach aimed to support legislative drafting by helping to cre-
ate a taxonomy of types of consumer protection provisions. Other ontologies assist
attorneys, corporate employers, and citizens to find or apply regulatory provisions.

Today, statutes and regulations are systematically annotated with a variety of
markup languages. Originally, such markups focused on enabling a document to
appear the way the author intended no matter what computing platform a viewer is
using.

Increasingly, however, such standards go beyond display of information and
enable structural and semantic markups of documents. A structural markup is a stan-
dardized categorization of parts of a text based on their structural roles in a document
(e.g., preambles, clauses, sections, subsections). A semanticmarkup is a standard cat-
egorization of different parts of a text according to their meaning in the document
(e.g., as provisions, definitions, citations, names, dates). XML or Extensible Markup
Language is a grammar and format for such structured data. XML files are a good
choice for containing annotated documents because they are readable by humans.

Legal documentmarkup languages, such as LegalDocML, based onAkomaNtoso
(Cervone et al., 2015), provide a systematic XML-type mechanism for represent-
ing legal documents including statutes and regulations and referencing documents
based on Uniform Resource Identifiers (URIs) in some authoritative online repos-
itory. The more familiar Internet URLs are a subset of URIs that also provide a
location for the resource.

For example, in Akoma Ntoso, all the documents or resources are identified by a
unique name using naming conventions and an ontology of classes relating to legal
documents, such as:

– Works (e.g., “act 3 of 2015”),
– Expressions (e.g., “act 3 of 2015 as in the version following the amendments

entered into force on July 3rd, 2016”),
– Manifestations (e.g., “PDF representation of act 3 of 2015 as in the version …”),
– Items (e.g., “the file called act32015.pdf on my computer containing a PDF

representation of act 3, 2015 as in the version …”),
– Components of the above, including expression components to represent

articles, sections, etc., and
– “individuals (Person), organizations (Corporate Body), actions and occurrences

(Event), locations (Place), ideas (Concept) and physical objects (Object)”
(Oasis, 2016).

With statutes marked-up in LegalDocML or a similar markup language, linking
between logical versions of legal rules and their statutory sources becomes easier,
ameliorating some of the complexity of maintaining isomorphic representations

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 182 — #14

182 Legal Text Analytics

(see Section 2.5.3). For example, the Eunomos system, a legal document and
knowledge management system, based on legislative XML and ontologies,

recognizes the need for a stricter coupling between legal knowledge and its legisla-
tive sources, associating the concepts of its legal ontology with the part of regulations
defining them, structured using legislative XML…[This] ground[s] concepts of
legal ontologies to their sources, making ontologies more acceptable to practition-
ers and synchronizing their meaning with the evolution of the text of the law across
its modifications. (Boella et al., 2016)

In other words, markup languages and ontologies like that in Eunomos and
Akoma Ntoso help to address the need for isomorphic representations of statutes
(see Section 2.5.3). Thus, business rules can be annotated with links to their statu-
tory sources for purposes of explanation and justification. When a statutory source is
modified, links to or searches for the implementing business rules can indicate the
need for possible updating.

Annotations in the statutory source texts can also maintain temporal information
about amended versions of the provisions and their effective dates. In analyzing prob-
lems involving past events, a system could then determine which version of a statute
was in effect at a particular time (Palmirani, 2011).

Ultimately, developers of ontologies of statutory and regulatory documents aim
to support some measure of legal reasoning. The developers of Eunomos plan to
associate “norms with (extended) Input/Output logic formulae whose predicates are
1:1 connected with the classes of the reference ontology, thus enabling automatic
inferences on the addresses of the norms” (Boella et al., 2016). In other words, they
will link the textual statutory sources of business rules with abstract representations
of norms and computationally implementable logical representations of the norms
via classes in the ontology.

For example, a particular directive of the EU Parliament states,

A lawyer who wishes to practise in a Member State other than that in which he
obtained his professional qualification shall register with the competent authority
in that State.

A systemwould represent this provision with a logical formula, which states, in effect,
the following: For all combinations of a lawyer (x), a Member State (y), an action in
which xwants an action of practicing in y, not theMember State where xwas initially
qualified, there should exist a registration action by x in y. A suitable legal ontology
would represent in logical terms the meaning of these concepts and their associated
constraints, rather like the logically expressed conditions in the concept frame of
Table 6.1 for the library regulation domain. Then, given data about an employer’s
roster of staff attorneys, their qualifications, and their pending assignments, a pro-
gram would be triggered automatically to reason about whether the lawyers satisfied
the requirement (Robaldo et al., 2015).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 183 — #15

Representing Legal Concepts in Ontologies and Type Systems 183

The work on norm graphs inOberle et al. (2012) (Section 2.5.1) had a similar focus.
The research aimed to support business compliance with statutory requirements, in
particular for engineering compliant software, by integrating a statutory ontology,
a subject matter ontology, and “user-guided subsumption between both” (Oberle
et al., 2012, p. 312).

A statutory ontology contains a taxonomy of normative concepts employed in a
statute, their relations to other normative concepts, as well as, their relations to con-
cepts in the regulated domain’s subject matter. In other words, it relates the statutory
concepts to the concepts and relations for describing real-world situations.

The authors conceive of an ontology as employing “formal logic in order to map
concept class relations from the normative rules to the subject matter to which they
apply” (Oberle et al., 2012, p. 288).2 Thus, similar to Robaldo et al. (2015) and Boella
et al. (2016), a statutory ontology represents in logical terms the meaning of the
statutory concepts and their associated constraints. The statutory ontology can then
support subsumption of fact situations by business rule norms as described in Sec-
tion 2.5.1. It also enables testing whether the normative concepts in fact subsume
those situations as intended.

The envisioned program would semiautomate construction of the ontologies,
focusing on a small number of legal consequences relevant to a limited regulatory
domain. As the authors characterize their philosophy: “Ontologies are tedious to
build. Consequently there should be more and smaller ones” (Dietrich et al., 2007,
p. 189).

The authors sketch how to build such a statutory ontology, in particular a “data pri-
vacy ontology for private bodies,” which formalizes elements of the German FDPA
and related provisions (Oberle et al., 2012, p. 288).

The envisioned program would provide a lexicon of regulatory terms and con-
cepts derived from an automated analysis of the statutory texts. An expert would
select relevant concepts, identify taxonomic and other relationships among the con-
cepts, and add them to the statutory ontology. By selecting particular concepts and
relations, the expert could represent constraints in business rules by constructing
or modifying norm graphs like those shown in Figure 2.6. If the expert wished to
apply practical business information, for example, that there is a shortcut around
the requirements of FDPA §4b II sentence 1 BDSG, as illustrated in Section 2.5.1,
that could be represented explicitly in the norm graph as well.

The subject matter ontology also needs to be constructed. It contains schema
representing information about classes and relations (italicized) such as “Web service
isa Software isa Data isa Information object” and “Software performs Web Service

2 Both DALOS and the FDPA ontology employed DOLCE (Gangemi et al., 2002), as a foundational
ontology of concepts, entities, classes, and properties that the taxonomies extended and specialized in
the direction of the particular statutes of interest (Francesconi et al., 2010, p. 103; Oberle et al., 2012,
p. 289, fn. 9).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 184 — #16

184 Legal Text Analytics

Operation Invocation, which targetsWeb ServiceOperation and requestsData about
Entity” (see Oberle et al., 2012, p. 295).

The subject matter ontology also comprises instances of the schema to represent
specific classes.

Instances are concrete elements of classes that have relations to other instances
according to the schema. For example, an instance WSOpI1 of class Web Service
Operation Invocation might represent the transfer [of] data to Google Maps. (see
Oberle et al., 2012, p. 296)

The goal is that, by focusing on topics such as engineering compliant software, many
of the instances of concepts and relations in the subjectmatter ontology can be added
straightforwardly from software industry sources.

Once the norm graphs, statutory ontology, and subject matter ontology are in
place, the authors envision that the system could guide a software developer into
designing compliant software. Various legal consequences need to be established,
for instance, that the software satisfies the “legality” and “effective consent” require-
ments. The program attempts to subsume the targeted software design, described to
the extent possible in terms of the subject matter ontology’s instances. It flags norm
concepts that still need to be satisfied and provides the developer with resources to
try to satisfy them.

For example, consider “Electronic Form,” the leaf-node concept of the norm
graph at the lower right of Figure 2.6. In an interface, when a user clicks on the
concept,

The [software] developer is informed about requirements for electronic consent
according to Sec. 13 (2) of the TMA [represented at the left side of the figure].
The corresponding view offers a visualisation of the legal concept as formalised in
the data privacy ontology for private bodies. In addition, the view offers tabs for the
concept’s definition, additional commentaries, or further information all of which
are part of the lexicon provided by the legal expert (Oberle et al., 2012, p. 306).

In this way, the system would provide semiautomated, user-guided subsumption
enabling developers to design compliant software. At least, that is the goal.

The use of automated IE techniques from texts could make it easier to construct
ontologies from statutes and build knowledge representation systems for business
rules. For instance, “future research on Eunomos will include populating fields such
as deontic clause, passive role, active role, crime and sanction in the extended ontol-
ogy for prescriptions using information extraction (IE) techniques” (Boella et al.,
2016). This topic is considered in Chapter 9.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 185 — #17

Representing Legal Concepts in Ontologies and Type Systems 185

6.6. ontological support for legal argumentation

What sort of legal ontology can support knowledge acquisition for the kind of
argument-scheme-driven reasoning, described in Section 5.7, that involves interpret-
ing legal rule concepts with analogical arguments taking into account underlying
values? As far as I know, no off-the-shelf ontology is available for this purpose.

The following extended thought experiment illustrates the features that an ontol-
ogy should provide in order to represent this kind of reasoning in a very lim-
ited domain, which nevertheless could serve as the basis for a legal educational
application.

The point of the illustration is to underscore the complexity of representing knowl-
edge to enable a computer to construct even relatively constrained but realistic legal
arguments. Fortunately, for cognitive computing to work, computational models
of argument do not need to generate legal arguments themselves. They do, how-
ever, inform the design of a different kind of ontology, a type system, explained in
Section 6.7. A type system can enable a legal app to help human users find rel-
evant arguments by identifying argument-related information in texts based on a
descriptive model of legal argument like the DLF model.

6.6.1. A Target Application for Legal Argument Ontology

First, let’s consider the targeted educational application. Suppose, one wanted a
system to generate dialogues that a law professor and students might engage in
about legal concepts. Table 6.2 illustrates the kind of legal classroom Socratic dia-
logue within the range of current argument models in AI & Law (see Ashley, 2009a,
2011).

It is a simplified version of the kind of dialogue one might hope to encounter in a
first-year Property Law class as the lessons turn to the topic of property rights in wild
animals and the case of Pierson v. Post, 3 Caines R. (N.Y. 1805), treated in legal case-
books on property law (see, e.g., Dukeminier et al., 2010). The topic deals with an
issue of common (i.e., judge-made as opposed to statutory) law: Under what circum-
stances may “hunters” have property rights in their quarry? As noted in Section 3.4,
the topic has been the focus of much discussion in AI & Law (see, for example,
Berman and Hafner, 1993; Atkinson and Bench-Capon, 2007; Gordon and Walton,
2009).

An educational software developer might design a program that generates dia-
logues like Table 6.2 as part of an intelligent tutoring system. An online Property Law
course or MOOC might incorporate such gamified versions of classroom Socratic
legal dialogues, where students and instructor make and respond to arguments.
Engaging students in selecting argument moves could teach both substantive law
and the kinds of first-year legal argumentation skills students need to read and
understand a legal casebook (see, for example, Ashley, 2000; Aleven, 2003).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C
06”

—
2017/5/27

—
11:36

—
page

186
—

#18

table 6.2. Sample Socratic legal dialogue in a microworld with argument moves (P = Plaintiff, D = Defendant) (Ashley, 2009a, 2011)

Transcript Argument moves

Part 1. Teacher: What should the legal test be in the Popov case for determining
P’s property right, if any, in the baseball?
Part 2. Student-A: The test should protect fair play such as “If P manifestly intended to gain
possession of something of value, and D intentionally interfered causing P to fail, then P can
recover.” In Popov, like the Keeble case, P won where P manifestly closed in on its quarry, D
knew P was closing in on the quarry goal, and D intentionally interfered physically with P’s
closing in on the quarry.

• Propose test for P
• Justify test ito principles and precedents
• Analogize precedent ito factors

Part 3. Teacher: Is protecting fair play the only condition? If a school master D of a competing
new school frightened students on their way to the old school of the P schoolmaster, if the P
recovered it would protect fair play but economic competition would be reduced.

• Pose hypo/challenge test as too broad
• Justify challenge ito principles

Part 4. Student-A: The Popov case is different from the Competing Schoolmasters hypothet-
ical because P and D are not in economic competition; a pro-D factor in the hypothetical
does not apply in Popov. Nevertheless, I will restrict my test to errant “baseballs” rather than
to “something of value.”

• Distinguish hypo
•Modify test to remove overbreadth

Part 5. Student-B: In response to Student-A,Keeble is different from Popov. InKeeble P pursed
his livelihood on his own land, and the court protected livelihoods and landowner’s rights.
Popov is more like Pierson where D won even though P manifestly closed in on it quarry, D
knew P was closing in on the quarry goal, and D intentionally interfered physically with P’s
closing in on the quarry.

• Distinguish pro-P precedent ito factors
• Justify distinction ito principles
• Argue principle not legally enforceable
• Cite trumping counterexample ito factors

Part 6. Teacher: What test do you suggest? • Propose test for D
Part 7. Student-B: My test is “If P did not gain possession of the baseball (e.g., by catching
and securing it), then he cannot recover.” This test would reduce frivolous law suits by dis-
couraging litigants who “almost caught” the ball or “should have had it,” and avoid property
rights in public property. This is not a concern in Keeble.

• Justify test ito principles and precedents
• Distinguish pro-P precedent on principle

186

of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781316761380.006

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Florida, on 03 N
ov 2017 at 09:21:46, subject to the Cam

bridge Core term
s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 187 — #19

Representing Legal Concepts in Ontologies and Type Systems 187

Here, let’s suppose the instructor introduces the scenario of the relatively recent
case, Popov v. Hayashi, 2002 WL 31833731 (Cal. Superior, 2002). On the last day of
the 2001 season, the San Francisco Giants’ Barry Bonds set a new record when he
hit his 73d home run. In the stands, Popov, a fan, caught the ball in his glove for an
instant but then lost it when other fans immediately tackled him. Bystander Hayashi
ended up grabbing the ball when it rolled out from under the scrum of fans. Plaintiff
(P) Popov sued Defendant (D) Hayashi for interference with his property rights in
the ball, asserting a claim of conversion.

A pedagogical goal of such a lesson is for law students to propose a defensible
legal rule or test for resolving disputes between plaintiffs in pursuit of wild animals, or
other quarry, and defendants who interfere with the plaintiffs’ attempts to secure their
quarry. A proposed test is a kind of hypothesis about how the case should be decided.
Advocates (or sometimes judges) propose such a rule for deciding a case and defend
it as consistent with past cases and underlying principles and policies. According to
Frederick Schauer, “When we provide a reason for a particular decision, we typically
provide a rule, principle, standard, norm, or maxim broader than the decision itself”
(Schauer, 1995, p. 641).

Ideally, students should justify their proposed tests by making arguments that
analogize or distinguish cases in the casebook text and that take underlying values or
policies into account. In response, instructors will probe the students’ tests and argu-
ments in a Socratic discussion. Supreme Court Justices, opposing advocates, and
law professors often propose hypotheticals in challenging a proposed decision rule.
Hypotheticals are imagined or made-up situations that involve a hypothesis such as
a proposed test, which are designed to explore a test’s meaning or challenge it as
too broad or too narrow. Section 3.4 illustrated hypotheticals posed by Berman and
Hafner or by a judge aimed at probing how the Pierson and Keeble cases should be
decided.

Figure 6.4 illustrates a general model of making legal arguments with hypothet-
icals, in which an interlocutor, such as a judge or instructor, poses a hypothetical
to test a proponent’s rule for deciding the case. In response to the instructor’s hypo-
thetical, a student may respond in a number of ways including by distinguishing
the hypothetical or modifying the proposed test so that it avoids the problem the
hypothetical exposes.

Let’s assume further that the designer employs appropriate argument schemes
to model arguments interpreting concepts in legal rules. These include schemes
like those we have seen in Chapter 5 for drawing analogies to precedents and
justifying them in terms of the underlying legal domain’s values and policies. In
addition, we assume, the designer develops schemes implementing the model in
Figure 6.4 for proposing a rule or test for deciding a case, posing a hypothetical
to test the rule, and responding by distinguishing the hypothetical or modifying
the test. Although we have not yet encountered such argument schemes, the VJAP
schemes in Section 5.7.3 come close with their focus on rule concepts and effects

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 188 — #20

188 Legal Text Analytics

figure 6.4. Model of legal argument with hypotheticals (Ashley, 2009b)

on underlying values (Grabmair and Ashley, 2010, 2011) presented a formalism for
argument schemes instantiating the model in (Ashley, 2009b), but it remains to be
implemented in the VJAP program and evaluated.

One sees immediately that such a dialogue involves a lot of CSK about hunting,
quarry, duck ponds, and oceans, and about the relevant similarities and differences
among fish, foxes, tuition-paying students, and baseballs. An ontology that supports
representing that kind of CSK would be a very complex affair. This is an example of
the knowledge representation bottleneck that has impeded AI & Law research.

Suppose, however, that the game designer wants to avoid trying to represent all of
that CSK in any robust way; he prefers instead to design an ontology that does little
more than support the moves in the dialogue. In other words, a system could use
the ontology and argument schemes for proposing a test, justifying the test in terms
of principles and precedents, analogizing a problem and case in terms of factors,
posing and responding to a hypothetical, or modifying a proposed test. It needs to do
so, however, for only a handful of cases like those in a property law casebook.

Indeed, let’s suppose that the designer is content with supporting arguments in
only a “microworld” of cases. The microworld comprises just a small collection
of cases (real and hypothetical), factors, policies or values, legal tests to propose,
and some other ingredients for a dialogue similar to that in Table 6.2 (Ashley,
2009a, 2011). This “Property-Interests-in-Quarry” Microworld will comprise, let’s
say, only the cases shown in Table 6.3: Pierson v. Post, Keeble v. Hickeringill, Young
v. Hitchens, Popov v. Hayashi, and an Escaping Boar case, as well as a hypothetical

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C
06”

—
2017/5/27

—
11:36

—
page

189
—

#21

table 6.3. Cases in Property-Interests-in-Quarry Microworld (P = Plaintiff, D = Defendant). Factor abbreviations are defined below in
Table 6.4 (Ashley, 2009a, 2011)

Case Name, cite (Case or Hypo) Explanation (Factors – Side Favored) [Decision: Plaintiff or Defendant]

Pierson v. Post, 3 Caines R. (N.Y.1805) (C) Where D killed a fox, a nuisance pest, that P hunted for sport on open land, P lost claim of interfer-
ence with property on issue of P’s possession where P had not killed or mortally wounded the fox.
(NC-D, OL-D, MCI-P, KCI-P, ll-P, N-P) [D]

Keeble v. Hickeringill 103 Eng.Rep. 1127 (K.B.
1706) (C)

Where D used guns to scare away ducks that P landowner lured to his part of the pond with decoys,
P won claim of interference with property despite issue of P’s possession where P had not killed or
mortally wounded ducks. (NC-D, OWL-P, L-P, MCI-P, KCI-P, ll-P) [P]

Young v. Hitchens, 6 Q.B. 606 (1844) (C) Where D commercial fisherman caught fish from within the still open nets P commercial fisherman
was closing around the fish, D won claim of interference with property due to issue of P’s possession
where P had not captured the fish. (NC-D, OL-D, L-P, C-D, MCI-P, KCI-P, ll-P) [D]

Flushing Quail (H) Where D, knowing that P was pursuing quail by flushing them out on open land and shooting them,
intercepted the quail and killed them, P won?/lost? a claim for interference with a property interest
where an issue involved whether P had a property interest in quail that P had not yet killed (NC-D,
OL-D, L-P, C-D, MCI-P, KCI-P, ll-P) [?]

Competing Schoolmasters (H) Where D schoolmaster scared away pupils from attending P’s school, P won?/lost? a claim for inter-
ference with a property interest where an issue involved whether the P had a property interest in
students attending his school. (NC-D, OL-D, L-P, C-D, MCI-P, KCI-P, ll-P) [?]

Escaping Boar (C) Where D possessed a wild animal nuisance pest that damaged P’s property, P won claim for negli-
gence/strict liability on issue that animal escaped through/without D’s fault. (NC-D, OWL-P, L-P,
N-P) [P]

Popov v. Hayashi, 2002 WL 31833731 (Cal.
Superior, 2002) (C)

Where D pocketed Barry Bonds’ record-breaking 73d home run baseball that P had caught in the
upper part of his mitt, P partially won a claim of interference with property despite the issue of P’s
possession where P had not completely secured the ball before being knocked down by other fans
(not includingD), but was awarded only half the proceeds of sale of baseball. (NC-D, OL-D, MCI-P,
KCI-P, ll-P) [Split proceeds]

189

of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781316761380.006

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Florida, on 03 N
ov 2017 at 09:21:46, subject to the Cam

bridge Core term
s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 190 — #22

190 Legal Text Analytics

or two: the Competing Schoolmasters hypothetical mentioned in the dialogue and
in Section 3.4 and a Flushing Quail hypothetical.

Let’s assume that the developer also wants to model analogies that may be drawn
across superficially different cases that nevertheless raise similar underlying issues,
for instance in comparing the Pierson and the Escaping Boar cases.

Finally, the designer aims to take another shortcut : the system need not infer any
of the propositions from scratch. The system will provide “canned” propositions and
their components. In effect, the system (or sometimes the student/user based on a
dynamically constructed menu of options) need only plug the right propositions or
components into the right argument moves.

Given an argumentation model like that in Figure 6.4 and legal argument
schemes like those in Chapter 5, a program could generate dialogues like the one
in Table 6.2. The right-hand column recapitulates the dialogue in terms of moves
associated with some of the VJAP argument schemes we have seen in Section 5.7.3,
some new schemes associated with the model of arguments with hypotheticals in
Figure 6.4, and selected elements of a database of argument components represented
with the help of a suitable ontology (Ashley, 2009a, 2011).

More specifically, an ontological framework that represents associations among
factors, legal concepts, and policies/values would help to choreograph the unfold-
ing steps in the dialogue. Driven by the current facts of a problem and available
argument schemes, a program could search the database, identify, and assemble
possible arguments, select one, for instance, attacking a proposed legal rule or test
as too broad, and produce the next step in the dialogue.

For example, an ontological ordering of legal terms by abstractness and legal
“inclusiveness” could guide a program in responding to the teacher’s Competing
Schoolmasters hypothetical in Part 3 of the dialogue in Table 6.2 by making the stu-
dent’s proposed legal test more specific. In Part 4, the student narrows the Manifest
Intent test to Manifest Intent-1, substituting “baseball” for the more general quarry,
“something of value.” Sometimes theremay be surprises. A hypothetical that changes
a fact may take a scenario out of one policy or into another. For instance, in Part 3,
switching the quarry from a baseball to a tuition-paying student and applying the
Manifest Intent test unexpectedly lead to a result that protects fair play but at the
expense of discouraging economic competition.

The next sections present a legal argument ontology that could satisfy these design
goals and support such an argument dialog.

6.6.2. An Ontology for the Argument Microworld

An ontology for the Property-Interests-in-Quarry Microworld needs to specify a list
of concepts and relations corresponding to the types of things in the collection as
well as frames specifying their components, features (slots), and slot-fillers. This
includes representing cases, legal factors, legal tests and ILCs, and underlying legal
policies/values.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 191 — #23

Representing Legal Concepts in Ontologies and Type Systems 191

Representing Cases and Legal Factors
Cases in the Microworld are represented with case frames. As shown in Figure 6.5,
each case frame comprises slots for a name, claim (for instance, conversion, a civil
wrong or tort in which one takes another’s property for one’s own use), result (for P
or D), and a list of applicable factors.

A case frame also specifies some features whose values are important for com-
paring cases in terms of legal factors for the Property-Interests-in-Quarry domain.
These Comparison Features include the starred (*) slots in the case frame from
Hunting/Catching venues through Interference caused.

Depending on the factual context, it may matter, for example, in what kind of
venue the hunting takes place, such as open land, ocean, or a baseball stadium,
what kinds of restrictions may apply on that venue (is it privately owned or open?),
or what kind of quarry was sought: noxious pest, edible game, or commercial catch.
Similarly, the extent of the steps taken by plaintiff to secure the quarry, the extent to
which those steps were manifested openly, and the intentionality of the defendant’s
interference could be important.

It requires a certain amount of legal CSK to understand that an intentional inter-
ference is worse for defendant’s defense of a claimed property interference than an
unintentional one, that seeking to catch a valuable baseball in the stands is like hunt-
ing a fox, that trying to divert a paying tutor to one’s school is like slipping in between
a competitor’s nets to gather up the catch, that fans likely do not “hunt” errant base-
balls in ponds or oceans, or that oceans are more open and likely free of property
restrictions than ponds.

figure 6.5. Case frame for Property-Interests-in-Quarry Microworld (P=Plaintiff,
D=Defendant)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 192 — #24

192 Legal Text Analytics

figure 6.6. Factor frame for Property-Interests-in-Quarry Microworld (P=Plaintiff,
D=Defendant)

A program cannot understand these differences as a human does. It cannot even
manipulate them in a reasonable way unless the information is represented and the
program is instructed where to find relevant information at the appropriate time. If
a developer wants the program to be “smart” enough to perform such comparisons
or enforce such semantic constraints, he needs to build them into the system, and
the ontology is a place to do so.

In this ontology, factors support comparing cases in terms both of on-pointness
and of magnitudes along a factor (see Section 3.3.2). In enabling comparisons of fac-
tor magnitudes, the factors employ a case’s values for the Comparison Features (the
starred slots in Figure 6.5). The case frame specifies the alternative possible values for
each Comparison Feature. Some of these slots involve an ordered range of possible
values. For example, values of Hunting/catching steps regarding possession range
from merely seeking-quarry to catching-and-securing-or-mortally-wounding-quarry.
Values of Intentionality of defendant’s interference range from unintentionally
interfering to doing so knowingly-or-intentionally.

The ontology also needs to specify a frame for any kinds of objects the computer
will be expected to “understand.” For example, there will need to be a quarry frame,
whose slots specify properties such as “Likely venues,” “If-edible,” “If-noxious-pest,”
“If-commercial-catch,” and indeed any of the properties of quarry that are anticipated
to matter in comparing the cases.

The ontology will represent legal factors with a factor frame as shown in
Figure 6.6. The factor frame will specify a legal factor’s name, abbreviation, legal
claim, side favored and phrases for translating the factor into English. Each of the
nine factors listed in Table 6.4 for the Property-Interests-in-QuarryMicroworld could
be represented with a new instantiation of the factor frame.

Rather than take the legal factors in a case simply as given, the factor frame could
support a list of constraints to test if a factor applies to a case or hypothetical as Hypo’s
dimensions did (see Section 3.3.2). A triggers slot would store the tests. For example,
theCompetes andLivelihood factors are triggered (in Part 3 of the dialogue, Table 6.2)
when the hypothetical substitutes “students” for “baseball” as quarry. The Nuisance
factor applies if the quarry is a noxious pest (If-noxious-pest).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 193 — #25

Representing Legal Concepts in Ontologies and Type Systems 193

table 6.4. Factors and policies in Property-Interests-in-Quarry Microworld
(P=Plaintiff, D=Defendant) (Ashley, 2009a, 2011)

Factors Short Name (Abbreviation) [Side-Favored]

Quarry not caught or mortally
wounded

Not Caught (NC) [D]

Open Land Open Land (OL) [D]
Own Land Own Land (OWL) [P]
P Pursuing Livelihood Livelihood (L) [P]
D in Competition with P Competes (C) [D]
P manifestly closes in on goal Manifest Closing In (MCI) [P]
D knows P closes in on goal Knows Closing In (KCI) [P]
D intentionally interferes physically
with P’s closing in on goal

Intentional Interference (II) [P]

Quarry is a nuisance pest Nuisance (N) [P]

Principles or Policies Meaning

Protect Fair Play Discourage unsportsmanlike conduct and unfair
competition

Reduce Nuisance Pests Encourage eradication of deleterious pests
Reduce Frivolous Suits Maximize rule’s clarity of application and

minimize scope so as to reduce frivolous law suits
Protect Livelihood Protect livelihood of working parties
Avoid Property Rights in Public
Property

Avoid assigning property rights in things on public
property

Promote Economic Competition Promote economic competition among
businesspersons

Protect Free Enterprise Protect free enterprise of businesspersons
Protect Landowner’s Rights Protect the rights of the landowner on his own land

The factor frame “Focal slot range” specifies the case frame Comparison Feature
whose ordered range of possible values is used to represent the factor’s magnitude
in a case. The “Pro-plaintiff direction” indicates which end of that range favors the
plaintiff. A case’s magnitude along that factor is the value along the range of the asso-
ciated Comparison Feature that applies in the case. For example, a program could
then distinguish a case as weaker for the plaintiff in magnitude along the Intentional
Interference factor if the defendant only unintentionally interfered with plaintiff’s
pursuit. If the plaintiff’s intention to pursue the quarry were hidden or ambiguous,
a plaintiff’s case is weaker along the Knows Closing In factor. A case is stronger for
plaintiff in magnitude along the Own Land factor if the hunting venue was owned
by the plaintiff as in Part 5 of the dialogue (Table 6.2).

Once an ontological framework is in place, one can begin to populate a database
of cases by instantiating case frames and filling slots with values.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 194 — #26

194 Legal Text Analytics

In the Popov case, for example, the facts that the plaintiff did not catch and secure
or mortally wound the quarry, and that the events took place on what might be con-
sidered open land (or, at least, not on a venue owned by the plaintiff) all favored
the defendant Hayashi. On the other hand, the facts that the plaintiff manifestly was
closing in on the quarry, defendant knew that the plaintiff intended closing in on
the quarry, and the defendant intentionally interfered with plaintiff’s pursuit of the
quarry helped plaintiff Popov. Accordingly, as shown in Table 6.3, the Popov case
is represented in terms of the following factors elaborated in Table 6.4: Not Caught
(NC) [D], Open Land (OL) [D], Manifest Closing In (MCI) [P], Knows Closing In
(KCI) [P], Intentional Interference (II) [P].

In this way, the ontology supports representing relevant case facts. Next, let’s turn
to how the ontology supports representing the relevant law.

Representing Legal Tests
In order to model the sample dialogue of Table 6.2, the ontology needs to represent
the law for purposes of arguing about what the law should be. The students propose
legal rules or tests and the instructor probes the proposed tests’ adequacy by posing
hypotheticals. The students may respond to the hypothetical by modifying the test to
make it more or less restrictive. The ontology needs to support these modifications.

Let’s illustrate how it will do so with the small set of proposed tests employed in the
sample dialogue shown in Table 6.5. The left column lists five proposed tests. The
first set of two tests deals with possession (Possession and Possession-1). The second
set of three tests deals with manifest intent (Manifest Intent, Manifest Intent-1, and
Manifest Intent-2). For the moment, let’s put aside the right column, which shows
how the tests would be represented logically.

The proposed tests employ five ILCs:

1. POSSESSION(quarry, level)
2. MANIFESTATION-OF-INTENTION-TO-POSSESS(quarry, level)
3. INTENTIONALITY-RE-INTERFERENCE(level)
4. INTERFERENCE
5. CAUSE(INTERFERENCE not(POSSESSION(quarry, level)))

The ILCs are represented with parameters that accept values. For instance,
POSSESSION can specify the quarry possessed and the level of possession, that
is, the hunting/catching steps that have been taken. The possible values are the
same as for the Comparison Features of the case frame (the starred slots in
Figure 6.5). The quarry possessed can take the values of Quarry: animal
(wild, domestic, edible, nuisance pests, fox, or quail), baseballs, students, some-
thing of value, or economic goals. The level of possession can be the values
from Hunting/catching steps regarding possession: seeking-quarry, closing-in-on-
quarry, catching-briefly-or-wounding-quarry, or catching-and-securing-or-mortally-
wounding-quarry. The ILC MANIFESTATION-OF-INTENTION-TO-POSSESS

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C
06”

—
2017/5/27

—
11:36

—
page

195
—

#27

table 6.5. Proposed tests in Property-Interests-in-Quarry Microworld (P=Plaintiff, D=Defendant) (Ashley, 2009a, 2011)

Proposed Tests Short Name Logical rule

If P did not gain possession of the
baseball by catching and securing
it, then P cannot recover.

Possession not(POSSESSION(baseball, mortally-wounding-or-catching-and-
securing))→
not(recover)

If P did not gain possession of
something-of-value by catching
and securing it, then P cannot
recover.

Possession-1 not(POSSESSION(something-of-value, mortally-wounding-or-
catching-and-securing))→
not(recover)

If P manifestly intended to gain
possession of the fish, and D
intentionally interfered causing P
to fail, then P can recover.

Manifest lntent-2 MANIFESTATION-OF-INTENTION-TO-POSSESS(fish, level: manifestly-
intended) ∧
INTERFERENCE ∧
INTENTIONALITY-RE-INTERFERENCE (knowingly-or-intentionally) ∧
CAUSE(INTERFERENCE not(POSSESSION(fish, mortally-wounding-or-
catching-and-securing)))→
recover

If P manifestly intended to gain
possession of the baseball, and D
intentionally interfered causing P
to fail, then P can recover.

Manifest lntent-1 MANIFESTATION-OF-INTENTION-TO-POSSESS(baseball, level:
manifestly-intended) ∧
INTERFERENCE ∧
INTENTIONALITY-RE-INTERFERENCE(knowingly-or-intentionally) ∧
CAUSE(INTERFERENCE not(POSSESSION(baseball, mortally-
wounding-or-catching-and-securing)))→
recover

If P manifestly intended to gain
possession of something of value,
and D intentionally interfered
causing P to fail, then P can
recover.

Manifest Intent MANIFESTATION-OF-INTENTION-TO-POSSESS(something-of-value
level: manifestly-intended) ∧
INTERFERENCE ∧
INTENTIONALITY-RE-INTERFERENCE(knowingly-or-intentionally) ∧
CAUSE(INTERFERENCE not(POSSESSION(something-of-value,
mortally-wounding-or-catching-and-securing)))→
recover

195

of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781316761380.006

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Florida, on 03 N
ov 2017 at 09:21:46, subject to the Cam

bridge Core term
s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 196 — #28

196 Legal Text Analytics

figure 6.7. ILC frame for Property-Interests-in-Quarry Microworld (P=Plaintiff,
D=Defendant)

can specify the quarry and the level of the manifestation of intention to possess,
the values of which are the value of Objective manifestation of plaintiff’s quarry-
seeking: hidden-intention, ambiguous-intention, or clearly-manifested-intention.

Within each of the two sets of tests in Table 6.5, the tests vary in terms of their
generality. The Possession-1 test is more general, that is, more sweeping in its scope,
than the Possession test in that “something-of-value” replaces “baseball.” Similarly,
the Manifest-Intent test is more general than either Manifest-Intent-1 or -2 because
it deals with “something-of-value” rather than “baseball.”

Modifying the generality of a test is a way of responding to the instructor’s
challenge. In the dialogue of Table 6.2, Student-A modifies his proposed test by sub-
stituting the more restrictive Manifest-Intent-1 test for the Manifest-Intent. In relying
on a more restrictive test, Student-A avoids the thrust of the instructor’s hypothetical.

One can imagine other plausible ways to modify the proposed tests to make them
more or less restrictive. Three of the ILCs set standards or levels that lie on a range
of plausible levels of restrictiveness (> means more restrictive than):

– Levels of POSSESSION: catching-and-securing-or-mortally-wounding >

catching-briefly-or-wounding-quarry > seeking
– Levels of MANIFESTATION-OF-INTENTION-TO-POSSESS: clearly-

manifested-intention > ambiguous-intention > hidden-intention
– Levels of INTENTIONALITY-RE-INTERFERENCE: knowingly-or-intent-

ionally > negligently > unintentionally

Each of these corresponds to a Comparison Feature of the case frame (Figure 6.5),
namely, Hunting/catching steps re possession, Objective manifestation of plain-
tiff’s quarry-seeking, and Intentionality of defendant’s interference, respectively.

The ontology will support this kind of reasoning with the meanings of ILCs and
the generality of proposed tests. Each of the ILCs would be instantiated in an ILC
frame (shown in Figure 6.7).

The ILC frame has slots for specifying which values the concept’s parameters will
accept and the Comparison Features of the case frame that serve as the parame-
ters’ ranges of restrictiveness. By changing the values of these levels, the system (or
a student) could modify the proposed tests so that, for example, a version of the
Manifest-Intent test applies even if the defendant’s interference were unintentional

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 197 — #29

Representing Legal Concepts in Ontologies and Type Systems 197

figure 6.8. Test frame for Property-Interests-in-Quarry Microworld (P=Plaintiff,
D=Defendant)

figure 6.9. Policy/Value frame for Property-Interests-in-Quarry Microworld (P = Plain-
tiff, D = Defendant)

or accidental or did not cause the plaintiff to fail to secure the quarry. That might not
be good policy, but in this Microworld, ideally the system could select the appropri-
ate argument scheme and make the counterargument that such a rule would be so
general as to impinge too much on the policy to reduce frivolous law suits (see the
next section).

The ontology will define proposed legal rules or tests with a frame similar to that in
Figure 6.8. We will assume that each test can be expressed in the form of a first-order
logical rule composed of ILCs. The Test Frame needs slots to represent these logical
rules, the antecedent ILCs, and the consequent. For each of the proposed tests in
the left column of Table 6.5, the right column shows the logical rule that represents
it. Section 6.5 illustrated similar examples of designing an ontology to relate logical
tests to legal concepts.

With these ontological components, one could represent the small set of proposed
tests in Table 6.5 that will suffice for modeling the sample dialogue.

Representing Legal Policies and Argument Schemes
Finally, as suggested above, the Microworld contains policies or values that underlie
the proposed tests for governing this legal domain of protecting (or not protecting)
property interests in quarry. One might represent eight such policies or values as in
Table 6.4.

The Policy/Value frame (Figure 6.9) provides for a name, a translation into
English and, crucially, lists of factors and ILCs (the terms in proposed tests) that
relate to it. Similarly, the frames for cases, factors, and ILCs also contain slots for
specifying the lists of policies and values that are related to a given instantiated case,
factor, or ILC.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 198 — #30

198 Legal Text Analytics

These conceptual linkages of policies and values, cases, factors, or ILCs enable
the program to operationalize analogizing, distinguishing, posing hypotheticals, and
modifying proposed tests. The argument schemes that generate the dialogue in
Table 6.2 make use of the linked information:

– Propose test or rule, in terms of ILCs, for deciding a case
– Draw analogies to past cases (i.e., precedents)
– Justify analogies in terms of underlying legal domain’s policies/principles
– Challenge proposed test as too broad or too narrow by posing hypotheticals
– Respond to hypotheticals by modifying the proposed test, etc.

By filling in the frame representations with the appropriate information, the argu-
ment schemes will be able to follow conceptual linkages, retrieve objects, and draw
inferences.

The factors are related to policies and values, and the similarities and differ-
ences are legally relevant because of the related policies and values. For example,
in explaining the Keeble case and distinguishing Pierson in Part 5 of the dialogue
(Table 6.2), the Own Land factor implicates the policy to Protect Landowner’s
Rights. In a complementary way, the Open Land factor relates to a policy to Avoid
Property Rights in Public Property.

ILCs relate to factors and policies. For example, Part 7 illustrates a connection
between the POSSESSION ILC, the Not Caught factor, and the policy to Avoid
Frivolous Suits. The INTENTIONALITY-RE-INTERFERENCE ILC is related to
the factor Intentional Interference and the policy to Protect Fair Play. If “quarry”
includes non-nuisance pests, game birds, or economic goals, various factors are
triggered invoking their underlying policies/values.

In sum, the microworld ontology is an attempt, in this extended thought experi-
ment, to operationalize all and only the concepts and relations required to produce
the dialogue and others like it. This includes concepts and relations of the substan-
tive legal domain, the law of property rights in quarry, and at least some of the
real-world mechanics of catching quarry. A database would instantiate the cases,
factors, principles, and policies and interrelate them via the ontological framework.

6.6.3. Limits for Automating Legal Argumentation through Ontological Support

Such dialogues are legally realistic and have pedagogical utility. They illustrate how
legal rules are subjected to interpretation, challenge, and change in the process of
comparing cases. An advocate proposes a test that explains a past result, and leads to
a desired result in current facts, as a matter of deductive reasoning. The proposed
test, however, is subjected to a process of interpretation. Skeptics pose hypotheticals
to explore the meaning of a rule’s ILCs and assess its fit with past decisions and prin-
ciples. The test is applied deductively to the facts of hypotheticals and precedents,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 199 — #31

Representing Legal Concepts in Ontologies and Type Systems 199

but the results must be assessed in light of the domain’s underlying policies and val-
ues. Precedents are revealed as authoritative sources of a rule and also as a set of
facts from which advocates and judges may extract a range of rules in light of new
problem’s facts, other decisions, and underlying policies and values.

A microworld approach like this could serve as the basis for an impressive tutoring
system. Students could try out arguments and responses involving a casebook chap-
ter’s collection of cases and hypotheticals on a particular topic like property rights in
quarry. Having generated part of a dialogue, the system could assess what arguments
it could reasonably make as a next step, some better, some worse, and offer students
a menu of options. Students could explore the options, anticipating responses, and
see if they were right.

In fact, a program to generate such dialogues has not been constructed – this
is just a thought experiment after all – but the recapitulation conveys a sense of
how such a program would work. The point of the example is to illustrate how
an ontological framework for representing the associations and connections among
structured objects makes possible this kind of argument-scheme-driven construction
of a dialogue.

If one were to implement this ontology and database of structured objects and use
the argument schemes of Chapter 5, the result would be general in the following
sense. The dialogue in Table 6.2 would be just one of the dialogues the resulting
program could generate. In principle, the program could generate the same kinds
of dialogues beginning with any of the cases or hypotheticals in the microworld (see
Table 6.3) (Ashley, 2009a, 2011).

On the other hand, this thought experiment illustrates some limitations in
developing ontologies to support realistic legal argument.

First, how general can a legal ontology be and still be useful? The next chapter
of the property law casebook involves other concepts and relations, and there are
lots of other casebooks on different legal topics. There will be some overlap, and
some of the ontological framework could be reused, but not all of it can be reused,
and the remainder would have to be adapted manually to each new domain. For
instance, compare the frames for tests and ILCs in Figures 6.7 and 6.8 with those of
van Kralingen’s legal norm and concept frames in Table 6.1. They both have slots for
antecedents, consequents, and logical rules. TheTest and ILC frames, however, have
more slots specific to the Property-Interests-in-Quarry Microworld and the activities
of interpreting the meanings of the ILCs in light of the value effects in concrete
circumstances. Perhaps, the ontology shown for the microworld simply is not good
enough or reflects flawed intuitions about ontology design and a lack of foresight
concerning the phenomena for which it would need to account.

On the other hand, the comparison underscores that ontologies are designed for
particular purposes. As a result, there is little agreement on what exactly should be
specified in a legal ontology or with what level of detail, and assessing an ontol-
ogy’s adequacy or suitability depends on the purpose for which it was created

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 200 — #32

200 Legal Text Analytics

(Bench-Capon and Visser, 1997). Generally speaking, the legal ontologies developed
so far have not focused on modeling arguments about whether a legal rule should
apply to a hypothetical variation of the facts of a problem, and yet that task is essential
for explaining legal advice.

Secondly, as perusal of the ontological framework plainly shows, this kind
of knowledge representation is both intricate and, well, clunky. One needs to
invent ungainly concepts like catch-and-secure-or-mortally-wound in anticipation of
extending cases about wild animals to scenarios involving baseballs or tuition-paying
students.

Representing such concepts in a manner that enables a program to “see” analo-
gies between catching foxes, catching baseballs, and luring students is still a matter
of research, a particular challenge of which is enabling a program to distinguish
between analogies that are superficial from those that are analogous at a deeper
level. Consider the facts of the Escaping Boar case (see Table 6.3): D possessed a
wild animal nuisance pest, a boar, that damaged P’s property. On the surface, it
looks rather similar to Pierson v. Post; both involve escaping wild animals, nuisance
pests, defendants allegedly causing damage to plaintiffs’ property interests.

At a deeper level, however, these cases are quite different. They involve different
legal claims. TheEscaping Boar case involved a claim for negligence or strict liability
for keeping a (live) wild animal and allowing it to escape. Pierson involved conver-
sion. Both are tort claims, but focus on different kinds of damage inflicted through
different mechanisms. A simple way to handle this is to instruct the program to pay
attention to the particular claims involved in a case. On the other hand, some claims,
though different, are actually analogous at the deeper level of the kinds of damage
or mechanisms they involve. Thus, one could imagine more sophisticated solutions
as well (Ashley, 2009a, 2011).

Another aspect of the clunkiness of the representation scheme is its lack of detail.
While the arguments generated by the scheme-driven search with ontological sup-
ports are sophisticated enough for a pedagogical lesson, they do not quite measure
up to the test Judge McCarthy developed in the Popov v. Hayashi case to resolve
property interests in a valuable homer baseball struck into the stands and fought
over by competing fans. Judge McCarthy’s three-part test is shown in Figure 6.10.

The sophistication of Judge McCarthy’s test exemplifies the kind of creative legal
reasoning that is characteristic of human intellectual activity. Notice how Judge
McCarthy (following Professor Gray) defines “possession” in terms of the relative
momenta of the ball and fan, speaks of a “pre-possessory” interest, and distinguishes
“incidental” from intended contacts. Imagine refining the ontological framework
and knowledge representation to support these qualifications (Ashley, 2009a, 2011).

The challenge is especially great given the fact that the process of designing such
an ontology and instantiating structured objects in a database is, like my thought
experiment, largely manual and requires expert foreknowledge of how the informa-
tion will likely be used in the targeted kinds of argument. Ideally, an ontology would

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 201 — #33

Representing Legal Concepts in Ontologies and Type Systems 201

figure 6.10. Judge McCarthy’s Test in Popov v. Hayashi

extend itself as it is being used. As discussed above, some automated techniques for
assisting experts to construct and expand ontologies have been developed, but it is
not clear how to apply them to this kind of ontology for legal argument (see below).

The contrast between Judge McCarthy’s actual test and the tests proposed in
the thought experiment raises the question of just how far argument-scheme-driven
search over databases of ontologically structured objects can be extended. The field
of AI & Law has produced increasingly detailed argument models and argument
schemes, but its knowledge representation techniques have not kept up with the
capabilities of its argument models.

Fortunately, the level of detail in Judge McCarthy’s analysis would not be nec-
essary for a satisfactory tutoring system, nor does cognitive computing require such
sophisticated interpretations of ILCs or a command of commonsense reasoning at
such a fine level of detail.

6.6.4. Ontological Support for Cognitive Computing in Legal Argumentation

As noted, for cognitive computing to work, computational models of argument
would not necessarily need to generate the arguments themselves, but rather focus
humans on useful argument examples found in a corpus of legal texts. Ideally, cog-
nitive computing could help Judge McCarthy find past cases and particular passages
to consider in devising a suitable test. For instance, it could help him search a corpus
of past cases specifically for examples of rules for determining possession of sought-
after quarry or specifically for such cases where plaintiffs (or defendants) won. It
could also help him identify examples of fact findings where a trier of fact held that
the requirements of such a rule were satisfied or not.

Today’s legal information tools have lots of cases, but they do not have informa-
tion about the argument roles that sentences play in those cases. If AI & Law models
of argument and legal ontologies could support extracting that kind of argument-
related information from case texts, they could enable conceptual information
retrieval in support of human attorney’s creative legal reasoning.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 202 — #34

202 Legal Text Analytics

6.7. type systems for text analytics

As indicated above, legal ontologies contain information for representing substantive
legal concepts and rules. As discussed above, they have been focused on represent-
ing legal knowledge to improve legal information retrieval and to facilitate reasoning
with statutory rules and concepts for purposes of regulatory compliance (Section 6.5)
as well as for other tasks including a pedagogical application of legal argument
(Section 6.6).

What is needed, however, is a legal ontology that will support a computer in
identifying legal arguments and argument-related information in texts. A program
can reason with that information to some extent and use it to find examples of past
arguments in prior case texts that are relevant to human arguers’ needs.

6.7.1. Defining a Type System

Finding such examples of legal argument requires a different kind of ontology, a
“type system,” and a set of software components that can identify types of information
in texts and process it.

A type system defines the structure for possible markup [of texts], providing the nec-
essary data types for downstream components [in a pipeline] to make use of partially
processed text, and gives upstream components a target representation for markup
data. (Wu et al., 2013)

Type systems are an element of natural language text processing frameworks
such as General Architecture for Text Engineering (GATE) or UIMA. As noted in
Chapter 1, UIMA is an open-source Apache framework used in IBM’s Watson
QA system. In UIMA frameworks, an assemblage of software components called
“annotators,” organized into a text-processing pipeline, analyzes texts and extracts
information corresponding to the types. Each automated annotator analyzes some
region of text in a particular way, assigns semantics to it, and produces annotations
or assertions about the text. Other annotators “down the line” can use the annota-
tions to draw additional or more abstract inferences about the semantics of the text
(Ferrucci et al., 2010, p. 74; Ferrucci, 2012).

The type system is organized hierarchically and coordinates communication
among the annotators. In UIMA, a type system is a graph of concepts that relate
to each other hierarchically in various ways as subtypes, super types, and attribute
types. It supports a formalization of an annotator’s analysis input and output data in
a manner that the other annotators can interpret and process (Epstein et al., 2012, p.
15:1). Although the term “pipeline” suggests a linear organization of the annotators,
parallel processing is also possible.

A type system functions as a kind of ontology for text analysis, defining kinds of
annotations, concepts, and relations that can occur in documents (Grabmair et al.,
2015). Unlike ordinary ontologies, however, type systems include textual semantic

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 203 — #35

Representing Legal Concepts in Ontologies and Type Systems 203

types that capture mentions, ways in which concepts and conceptual relations are
referred to or manifested in domain texts. For instance, in writing an opinion in a
vaccine injury case (Section 5.8), a judge may refer to a “vaccination for varicella.”
Mention types for VaccineMention and VaccinationMention provide a mechanism
for annotating that text as referring to the concepts of vaccine and vaccination.
In fact, there are a number of ways to refer to such a vaccine or vaccination, for
instance, “chickenpox vaccination,” “inoculation against chickenpox,” “VARIVAX
injection” (the commercial brand name), and so forth. All of these can be annotated
as instances of mentions of the concepts of vaccine and vaccination.

Type systems have been applied in domains ranging from clinical data stored in
electronic medical records (Wu et al., 2013) to paired question/answer texts in the
“Jeopardy!” game.

6.7.2. Type System Example: DeepQA

The DeepQA system, developed with UIMA and employed in IBM’s Watson,
included a formal type system of both annotation types and ontology concepts.

DeepQA is based on the assumption that instances of “answer types” could be
identified and extracted from the text of Jeopardy! “questions” and “answers” auto-
matically. A Lexical Answer Type or “LAT” is “a word or noun phrase in the question
that specifies the type of the answer without any attempt to understand its seman-
tics,” that is, without even knowing what the word means. If a candidate answer is
also an example of the same LAT, it is some positive evidence Watson can use in
ranking candidate answers by relevance (Ferrucci et al., 2010, p. 70).

For example, for a Jeopardy! category, “Oooh … Chess,” and a clue, “Invented
in the 1500s to speed up the game, this maneuver involves two pieces of the same
color,” the word “maneuver” is the LAT (Ferrucci et al., 2010, p. 70). Intuitively, one
can see the utility of a LAT given the correct Jeopardy! response, “What is castling?”
Castling is a maneuver in chess.

While LATs provide some information for assessing whether candidate answers
match a question, that information is frequently insufficient. In analyzing a random
sample of 20,000 Jeopardy! questions, the researchers found that “The most frequent
200 explicit LATs cover less than 50 percent of the data” (Ferrucci et al., 2010, p. 63).
As a result, Watson frequently needs to generate additional information for assessing
a match.

In determining if candidate answers are instances of or closely related to the clue’s
answer type as indicated by the LAT, Watson employs two kinds of type systems. The
first type is “general-purpose NLP types, which are used to represent a linguistic
analysis of the question or of a text passage” (Epstein et al., 2012, p. 15:3).

The second type is specific to DeepQA and aims at revealingmore semantic infor-
mation for identifying candidate texts andmatching them to the LATof the Jeopardy!
question. Watson queries its text corpora and some special knowledge sources to

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 204 — #36

204 Legal Text Analytics

retrieve content relevant to the question. The queries generate documents, text pas-
sages, or responses based on special knowledge. The query results are then analyzed
for instances of another type, the CandidateAnswerFeature type. These are pairs of
labels and scores associated with a potential answer in a search result and are used
to select the best answer (see Epstein et al., 2012, p. 15:3).

For example, a Jeopardy! clue stated “He was presidentially pardoned on Septem-
ber 8, 1974” to which the correct Jeopardy! response was “Who was Nixon?” Of
course, Watson does not know the correct response. Let’s assume, however, that
“Nixon” is one of the candidate answers it generated based on a retrieved passage,
“Ford pardoned Nixon on Sept. 8, 1974.”

Watson applies multiple passage scoring algorithms to assess the relevance of this
text. One scorer “counts the number of IDF-weighted terms in common between
the question and the passage.” Another scorer “measures the lengths of the longest
similar subsequences between the question and passage (for example ‘on Sept. 8,
1974’).” A third scorer “measures the alignment of the logical forms of the question
and passage.” A logical form is a graph of the text in which the nodes are its terms
and the edges represent grammatical or semantic relationships. The logical form
alignment scorer “identifies Nixon as the object of the pardoning in the passage,
and that the question is asking for the object of a pardoning.” Thus, “[l]ogical form
alignment gives ‘Nixon’ a good score” (Ferrucci et al., 2010, p. 72).

In practice, DeepQA employs a large number of scoring algorithms to determine if
a candidate answer is an instance of a LAT. These algorithms often employ their own
type systems that focus on identifying different types of features based on relations
between concepts mentioned in the answers (Ferrucci et al., 2010, p. 70).

The different types of features contribute different amounts of evidence that a
question and candidate answer match depending on the type of question. “[C]ertain
scores that may be crucial to identifying the correct answer for a factoid questionmay
not be as useful on puzzle questions” (Ferrucci et al., 2010, p. 74). Watson employs
ML based on a training set of many correct question/answer pairs to learn weights
to assign to the different types of features according to their predictive success in
different types of questions (Ferrucci et al., 2010, p. 74).

6.8. luima: a legal uima type system

As we have seen, the type system in DeepQA defines types useful for Watson’s task of
matching texts with candidate answers to Jeopardy! questions. AI & Law researchers
have created a UIMA type system for the legal domain (LUIMA) focused on con-
cepts, relations, and mentions for identifying argumentation roles of sentences in
judicial decisions useful for the task of legal information retrieval (Grabmair et al.,
2015). So far, they have applied LUIMA to legal decisions in the vaccine injury
domain and corpus introduced in Section 5.8, but they plan to apply it to other
legal domains as well.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 205 — #37

Representing Legal Concepts in Ontologies and Type Systems 205

table 6.6. Hierarchical LUIMA type system: Sentence Level, Formulation, Mention,
and Term Types

Level LUIMA Types Example

Sentence Level
Types

Citation, Legal rule, Legal ruling or
holding of law, Evidence-based finding
of fact, Evidence-based intermediate
reasoning, Evidence, Legal policy,
Policy-based reasoning, Case-specific
process or procedural facts

SeeTable 6.7

Formulation ConflictingArgumentsFormulation “at odds with”
Types LegalStandardFormulation “must be supported by”
Mention DecisionBodyMention “the court”
Types TestimonyMention “expert testimony”

CurrentCaseContextMention “In this case”
ProofBurdenMention “the burden of proof”
VaccineMention “Tetanus”
VaccinationMention “Tetanus vaccination”

Term Types PlaintiffTerm/DefendantTerm plaintiff, petitioner/
respondent

CausationTerm cause, causes, causal, causa-
tion

DepartmentTerm Department
PositiveArgumentAttributeTerm consistent, clear
ConclusionTerm conclude
MustRelationTerm must, have to
PrescriptionTerm may
DecisionBodyTerm court
IllnessTerm Gastroparesis, injuries
VaccineTerm Tetanus

As shown in Table 6.6, the hierarchical LUIMA type system comprises four levels:
Sentence Level types, Formulation types, Mention types, and Term types.

The Sentence Level types at the top of the hierarchy and some examples are shown
in Table 6.7. They capture nine important roles that sentences play in legal argu-
ments such as stating a rule, a rule requirement, a finding of fact, or a conclusion
that a rule requirement is satisfied given a finding of fact.

Annotating sentences in cases according to their roles in legal argumentation
can improve information retrieval. Typically, relatively few sentences in a lengthy
opinion capture the significant reasoning. Some of these sentences state legal rules,
others report evidence in the case, and still others declare that evidence-based legal
findings satisfy legal rule requirements.

Depending on a system user’s goals for the information it seeks, the sentence roles
may make some of those sentences more relevant than others. For instance, con-
sider a useful kind of query in the vaccine injury context (Section 5.8). Let’s assume

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C
06”

—
2017/5/27

—
11:36

—
page

206
—

#38

table 6.7. Hierarchical LUIMA Type System: Sentence level types

LUIMA Sentence Level Definition Example
Types

Citation Sentence includes a citation to a legal authority. “See 42 U.S.C. §300aa-12(d)(4)(B); Vaccine Rule 18(b).”

Legal rule Sentence states a legal rule in the abstract, without
applying it to particular facts.

“Under that standard, the petitioner must show that it
is ’more probable than not’ that the vaccination was the
cause of the injury.”

Legal ruling or holding of
law

Sentence states a legal ruling or holding of law by the
judge

“For the reasons set forth below, I conclude that she
is entitled to such an award, in an amount yet to be
determined.”

Evidence-based finding
of fact

Sentence reports the factfinder’s finding on whether or
not evidence in a particular case proves that a rule
condition has been satisfied.

“I have found the opinion of Dr. Lacy to be more persua-
sive than that of Dr. Caserta, for a number of reasons.”

Evidence-based interme-
diate reasoning

Sentence involves reasoning about whether evidence in
a particular case proves that a rule condition has been
satisfied.

“In this regard, I note that I have carefully considered the
written report of Dr. Caserta.”

Evidence Sentence summarizes an item of evidence in the case. “In his testimony in this case, Dr. Lacy further explained
his belief that the tetanus vaccination likely caused the
gastroparesis of the petitioner, Ms. Roper.”

Legal policy Sentence states a legal policy in the abstract without
applying it to particular facts.

“As a matter of fundamental fairness, Mr. Popov should
have had the opportunity to try to complete his catch
unimpeded by unlawful activity.”

Policy-based reasoning Sentence involves reasoning about the application of a
legal policy to particular facts.

“To hold otherwise would be to allow the result in this
case to be dictated by violence.”

Case-specific process or
procedural facts

Sentence refers to the procedural setting of or a procedu-
ral issue in the case.

“The petitioner in this case contends that her condi-
tion of chronic gastroparesis was “caused-in-fact” by the
tetanus vaccination that she received on July 10, 1997.”

206

of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781316761380.006

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Florida, on 03 N
ov 2017 at 09:21:46, subject to the Cam

bridge Core term
s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 207 — #39

Representing Legal Concepts in Ontologies and Type Systems 207

an attorney needs cases in which a court found that varicella vaccine can cause
encephalomyeloneuritis. Perhaps, the attorney has a new client presenting such facts
and the attorney hopes to evaluate the chances of recovery. A suitable querymight be
“finding or conclusion that Varicella vaccine can cause encephalomyeloneuritis.”

It happens that a case called Casey v. Secretary of Health and Human Services3

presented these very facts, and yet, in an actual search using this query with a com-
mercial IR program, the Casey case ranked 16th. Based on the IR program’s case
reports, none of the cases that the IR program ranked higher than Casey appeared
to contain these particular facts, but more than half of the reports contained
re-statements or summaries of the Althen rule on causation (see Section 5.8).

Given the attorney’s fact-oriented purpose, it is highly unlikely that a sentence
that merely re-states the legal rule on causation in vaccine cases will be helpful
(Ashley and Walker, 2013, p. 36). While such a sentence contains instances of the
search terms, namely “vaccine” and “cause,” it is not particularly helpful because
it contains no information about specific vaccinations causing injuries. In contrast,
a system that had information about the user’s purpose and that could identify the
role of a sentence in a legal argument would prefer sentences that report relevant
evidential holdings, or that state conclusions applying a legal rule to relevant facts,
over sentences that simply report the legal rule. Such argument-related information
could help an IR system focus on key sentences, rank cases more effectively, and
improve retrieval precision generally (Ashley and Walker, 2013, p. 36).

The nine sentence types were developed by Hofstra University’s LLT Lab, and
are geared toward the DLF model of evidentiary legal argument described in Sec-
tion 5.8. All of the examples of sentence level types in Table 6.7, except the two
policy-type-related sentence level examples, come from another vaccine injury case,
Roper v. Secretary of Health and Human Services. The policy-related sentence level
examples come from Popov v. Hayashi, the case dealing with property interests in
quarry discussed in Section 6.6.1.

The subsentence types in the LUIMA Type System hierarchy shown in Table 6.6
include Formulation types, Mention types, and Term types at the bottom level.
The table provides examples of each type. The Formulation types capture common
expressions in legal argument and typical ways that judges express legal standards in
case documents.

The Mention types capture ways in which concepts in legal argument and the
subject matter domain are referred to. They are annotated with rules that identify
terminology for referring to such concepts plus additional language clues to help
ensure that the terms are, in fact, being used to refer to those concepts. The subsen-
tence Term types represent the basic terminology used in legal argumentation, as
well as terms used in the particular subject matter of the legal domain.

3 Casey v. Secretary of Health and Human Services, Office of Special Masters, No. 97-612V, December
12, 2005.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 208 — #40

208 Legal Text Analytics

The sentence level types and the formulation types higher up in the LUIMA type
system hierarchy are quite general across legal domains in cases involving legal evi-
dentiary argumentation. The mention and term types lower down are general across
legal domains too, but also contain terms and ways of mentioning concepts that are
necessarily more domain-specific. In the work on LUIMA so far, quite a few terms
are specific to the vaccine injury domain.

Ideally, human annotators canmark up documents in terms of these types, achiev-
ing a high level of reliability, and automated rule-based or ML-based annotators,
having been trained on the human-annotated data, can automatically assign the
types with a near-human level of reliability. Annotation issues are discussed further
in Section 12.5.2.

Since the concepts and relations can be mentioned in candidate texts in a variety
of ways, ML may help to identify these alternative expressions in an automated or
semiautomated way. In the latter, ML identifies candidate expressions and human
editors can approve them for inclusion (or not). In this way, techniques similar to
those described above in the Dalos ontology can be applied to extend and populate
an argument-related ontology and type system like LUIMA.

6.9. luima annotations can support conceptual legal
information retrieval

By combining ontologies of substantive legal concepts, legal argument-related con-
cepts, concepts in the regulated domain, and mentions in UIMA and LUIMA
type systems, conceptual information retrieval is possible. A system can use these
annotated types as a guide to ranking (and reranking) retrieved documents for
automatically summarizing relevant passages (see Grabmair et al., 2015).

Specifically, a system that can identify these roles of sentences in a legal argument
can helpfully direct a user to themost relevant cases and passages given the user’s par-
ticular need for the information, that is, how the user intends to employ the retrieved
information in an argument. User queries would be augmented with specifications
of the combinations of sentence types and concept relations that would be most rel-
evant given the user’s goals. Candidate documents would be retrieved that satisfy the
query as augmented by the specified focal types and relations. Supporting documents
would be ranked in terms of the system’s confidence that the documents satisfy the
constraints. Top-ranked documents would be summarized and passages would be
selected to highlight portions most relevant to the argument roles of interest.

For instance, consider a judge or advocate facing a future property law dispute
involving a plaintiff’s hunt for an abandoned robotic deep sea probe frustrated at
the last minute by a defendant hacker who intercepts the probe by overriding its
computer. If the user/judge is trying to determine what test to apply, it would be
useful to find sentences where judges have stated legal rulings or holdings of law,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C06” — 2017/5/27 — 11:36 — page 209 — #41

Representing Legal Concepts in Ontologies and Type Systems 209

that is, sentences of type legal ruling or holding of law, such as Judge McCarthy’s in
Figure 6.10, concerning various types of property or quarry.

We revisit this post-Popov query in Section 7.4. As explained in the section, an IR
system can retrieve such cases now, but these systems do not understand what the
user is looking for and, even if they did, cannot determine which sentences would
best satisfy such a query. IR systems do not annotate the sentences in cases by the
roles they play in legal argument and thus cannot match relevant sentences by their
roles to a user’s needs. Even in the Popov case, the three parts of Judge McCarthy’s
test are scattered about his 6,000+ word opinion. It would also be helpful to find
the judges’ evidence-based findings of fact, the sentences that indicate their findings
concerning whether or not their tests were satisfied.

To appreciate the significance of this shift in focus toward cognitive computing,
consider three contrasting potential goals of AI & Law research in the context of
Judge McCarthy’s decision in the Popov v. Hayashi case. One could attempt to build
an AI & Law system to:

1. Generate arguments like that in the Popov decision, culminating in Judge
McCarthy’s three-part test and justifying it based on analyses of prior cases.

2. Generate arguments like those illustrated in the sample Microworld dialogue
of Table 6.2.

3. Help humans generate their own arguments and tests by automatically retriev-
ing, (re)ranking, and summarizing relevant arguments and tests from past
cases.

Option (1) seems to be the focus of much work in AI & Law, but it also seems
to be too hard and to depend too much on hand-tooled knowledge representations
that likely will not connect to natural language texts until NLP methods are greatly
improved. As we have seen in Section 6.6, option (2) seems feasible given cur-
rent techniques. The microworld approach, however, also depends on hand-tooled
knowledge representations that will not readily connect to texts. Necessarily, the
numbers and range of cases and tests will be too limited to be of much use in com-
mercial legal settings, although theymay be enough to be used in interesting tutoring
systems for digital casebooks, online legal courses, or law school MOOCs.

Option (3) is the path featured in this book. Chapter 11 explains in detail how
LUIMA annotations can support conceptual legal IR.

Before taking that path, however, it will be helpful for the reader to learn more
about how legal IR works in Chapter 7, how to apply ML to extract information from
legal texts (Chapter 8), and in particular, how to extract information from statutory
and legal case texts (Chapters 9 and 10).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.006
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:21:46, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.006
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 210 — #1

7

Making Legal Information Retrieval Smarter

7.1. introduction

If computational models of legal reasoning and argument are to have a greater
impact on law practice, say by enabling legal apps in the mode of cognitive com-
puting, they will likely need to do so in conjunction with existing commercial and
institutional approaches to full-text legal information retrieval and e-discovery.While
the contribution of AI & Law could be substantial, the techniques may best be
applied at themargins of existing commercial tools, whose processes for corpus man-
agement, indexing and indexmaintenance, and search are well-established, reliable,
and efficient. Thus, before one anticipates the “value-added” of legal apps and cogni-
tive computing, it is well to understand the existing technology for legal information
retrieval.

This chapter explains current techniques for full-text legal information retrieval
of case decisions, statutes, and other documents. These are the current tools of
legal research that law students and legal professionals employ in constructing
legal arguments and writing briefs. The chapter illustrates a role of legal ontolo-
gies in improving full-text legal information retrieval through query expansion and
explains how some AI & Law techniques have already been harnessed to help
legal information retrieval take semantic information into account for assessing
relevance.

The chapter discusses the following questions: What is an inverted index? How
is relevance measured in a full-text legal IR system and how does that compare
with relevance measures of AI & Law models? How is the probability of a docu-
ment’s relevance to a query computed? What is query expansion? How can AI &
Law approaches be integrated with legal IR without requiring changes to the way IR
systems represent and index legal texts?

210
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 211 — #2

Making Legal Information Retrieval Smarter 211

7.2. current legal information retrieval services

A viable route for realizing practical legal apps is by developing cognitive comput-
ing modules to add on to full-text legal information retrieval services. In order to
understand how this might be accomplished, it is useful to understand current legal
information retrieval techniques.

Full-text legal information retrieval services are well-established in certain legal
markets such as in the United States. Legal practitioners know how to use the ser-
vices, employ them routinely, and express confidence in them. In American law
schools, students have access to Westlaw and LexisNexis as part of their legal educa-
tion and tend to rely on them habitually. The students expect to use these tools in
their subsequent practice, at least, if they work for firms or legal departments who
can afford subscriptions. Many state and local bar associations offer, as a perquisite
of membership, access to legal IR services (e.g., via Casemaker, 2015).

As mentioned in Chapter 1, law schools, international organizations, and agencies
maintain extensive specialized repositories of legal texts with their own established
practices for maintenance and search. (For example, Pace Law School’s CISG
database of cases and case annotations concerning the UN Convention on the
International Sale of Goods (Kritzer, 2015), the Index of World Intellectual Prop-
erty Organization (WIPO), Uniform Domain Name Dispute Resolution Policy
and Rules (UDRP) Panel Decisions (WIPO, 2015). These are decisions by arbi-
tration panels of disputes over Internet domain names.) Finally, Google Scholar
Cases and Courtlistener.com offer free search capabilities over extensive case
corpora.

These legal IR services comprise enormous databases of legal case, statutory, and
regulatory texts. The services maintain efficient, widespread institutionalized pro-
cesses for absorbing and indexing new texts as soon as they become available. The
commercial services also support substantial proprietary research establishments and
are constantly being improved.

Legal IR systems, however, can be improved still further. Their measures of legal
relevance and similarity, though highly serviceable, do not capture aspects of legal
relevance that the computational models of legal reasoning in Part I employ. Nor
can the IR systems identify or make use of important information about sentences
in the legal texts, such as the roles introduced in Section 6.8 that sentences play in
the legal arguments reported. As a result, IR systems cannot compare cases in terms
of legal relevance, make legal arguments, predict legal outcomes, or more actively
assist human users to perform these tasks.

Chapters 8 through 11 present techniques for performing these tasks that could
soon be appended to legal IR systems with little or no disruption to their established
process. First, however, this chapter explains how full-text legal IR works, focusing
on retrieving legal case decisions, and highlights some examples of how AI & Law
approaches have been integrated with legal IR.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 212 — #3

212 Legal Text Analytics

7.3. an example of using commercial legal ir systems

The goal of this chapter is to focus on the main conceptual ideas underlying most
information retrieval systems, not to describe in detail any particular legal IR ser-
vice currently available. Proprietary commercial services generally do not disclose
technical information and constantly modify the way their systems are implemented.
Since some readers may not have experienced using a modern legal IR system, how-
ever, here is an example of what it is like to use the two main commercial search
systems for legal documents in the United States, Westlaw Next (WN), and Lexis
Advance (LA).

Suppose onewere an attorney in the example of Section 6.8 facing a vaccine injury
problem in which a client suffered a serious condition, encephalomyeloneuritis,
after receiving an injection against chicken pox, or varicella, as it is called. In seek-
ing evidence or arguments related to proving or disproving the Althen Condition 1
(connecting the type of vaccine to the type of injury, see Section 5.8), an attorney
might search for cases involving the same type of vaccine and the same type of injury
as in the client’s scenario. As noted in Section 6.8, an appropriate query might be
“finding or conclusion that Varicella vaccine can cause encephalomyeloneuritis.”
At least one case satisfies this query exactly, the Casey1 decision.

One can submit such a query in natural language to either of the above systems.
As an option, one specifies the content type desired, namely “Cases,” and the juris-
diction, for instance “all federal,” comprising decisions of all federal courts. Upon
submitting the query, in less than three seconds, each program returns an annotated
list of results for the query in order of relevance (the “Results List”). Moreover, for
each case in the Results List, it generates the title of the case, court, jurisdiction, date,
and citation, as well as a “Case Report” summarizing information about the case and
providing selected excerpts relevant to the query. In a recent attempt, each program
retrieved Casey in its initial Results List. WN ranked the case as number 16. LA
ranked it as number 1.

Each Case Report provided a brief summary citing the relevant provisions of the
National Childhood Vaccine Injury Act under which the petition for compensation
was brought.

The WN Report stated the name of the party who filed the petition and a partial
description of an allegation. It then quoted four excerpts each concerning testimony
of an expert witness on the causation issue. For instance, one stated:

In sum, Dr. Tornatore articulated a credible and convincing theory explain-
ing why the varicella vaccine more likely than not caused petitioner’s
encephalomyeloneuritis, that the varicella vaccine was a substantial factor in
petitioner’s encephalomyeloneuritis, and that but for the varicella vaccination,
petitioner would not have developed encephalomyeloneuritis.

1 Casey v. Secretary of Health and Human Services, Office of Special Masters, No. 97-612V, December
12, 2005.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 213 — #4

Making Legal Information Retrieval Smarter 213

WN offers links to the part of the text where the excerpt is located.
The LA Report stated that the petitioner “was able to prove by a preponder-

ance of evidence that a varicella vaccine was the cause in fact of her neurological
injuries.” It then stated the first of a series of “Headnotes,” including some general
rules governing the petitioners burden:

In order to prevail under a theory of causation in fact, a vaccine-related injury
petitioner must show by a preponderance of evidence that the vaccine in question
caused the injury. To meet that burden, a petitioner must establish that the vaccine
can cause the injury in question, as well as show that the vaccine is in fact the cause
of the injury alleged. To make the requisite showing, petitioner must offer proof of
a logical sequence of cause and effect showing that the vaccination was the reason
for the injury.

LA offers links to other headnotes, complete passages, and a unique visual aid, a bar
linearly representing the headnotes, opinion, footnotes with colored lines indicating
where query terms are located. By moving the cursor over the bar, one sees combi-
nations of the terms that appear at that point. Clicking on the bar takes one to the
corresponding portion of the text with the terms highlighted.

As a former litigator who first used a commercial legal information service on a
dedicated terminal in the late 1970s, I regard the performance of WN and LA in this
example as astonishingly good. Each system’s output would obviously be useful. WN
quotes what clearly appears to be an evidentiary conclusion of the Special Master
framed as a characterization of an expert witness’s testimony with which the trier-
of-fact clearly agrees. On the other hand, WN ranked the Casey decision 16th in
its results list, preferring a large number of decisions whose Case Reports recited
the Althen rule on causation, as noted in Section 6.8. LA ranked the Casey decision
first, but its Case Report focused on a general restatement of the rules governing how
petitioner can demonstrate that the vaccine caused the injury. Using the graphical
bar display, however, it is easy to locate the Special Master’s findings of fact.

The question is how much do the IR systems understand about what the textual
excerpts they highlight mean? If they hadmore semantic information about the roles
of sentences in legal argument, could WN do a better job of ranking relevant infor-
mation and could LA select a more relevant headnote to display in its Case Report?
(See Section 11.4 for an evaluation that LUIMA annotations can improve ranking.)
Moreover, are there other features of legal disputes, for example, legal factors, that
an IR system could identify which would enable it to do more reasoning about the
decisions in the corpus in order to assist users in predicting outcomes, making argu-
ments, and testing hypotheses? As argued in Chapters 11 and 12, this would enable IR
systems to support legal apps in conceptual legal information retrieval and cognitive
computing.

First, however, let’s consider how legal IR systems accomplish what they can do
so well.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 214 — #5

214 Legal Text Analytics

7.4. how legal ir systems work

A legal IR system accepts a user’s query, retrieves documents from an indexed
database, measures the documents’ responsiveness to the query and ranks them, and
outputs an ordered list of results for a user’s perusal.

Users may input natural language queries expressed with sentences, keywords,
case names, or citations and specify the presence or positions of required terms.

Given a query, the IR program:

1. Strips away stop words, common words like “the,” “a,” and “and,” and stems,
endings like “ing” or “es.”

2. Identifies other remaining features beside words, such as citations to statutes,
constitutional provisions or prior cases, significant phrases and special index-
ing concepts.

3. Counts the number of times each remaining word or other feature appears in
text.

4. Uses an inverted index to retrieve candidate documents from the database,
namely, all those texts indexed as containing any of the features in the query.
(Turtle, 1995, p. 18)

The database contains documents processed in much the same way as queries
and is likely to be implemented using an inverted index (see Büttcher et al., 2010,
p. 33). The index lists certain features appearing in any texts stored in the database.
For each feature, the inverted index records all documents in which it appears,
its location in each document, and the number of times it appears in the docu-
ment and in the text corpus as a whole (Büttcher et al., 2010, p. 48; Turtle, 1995,
p. 18). Since new documents are constantly being added, various index maintenance
strategies must be employed (see Büttcher et al., 2010, Ch. 7) but these will not be
discussed here.

The IR system outputs a list of cases ranked according to their relevance to the
query. IR systems have employed a variety of techniques and measures for assessing
relevance to a query including: Boolean, vector space, and probabilistic models (see
Section 7.5). All of them make use of the frequency information contained in the
inverted index.

To illustrate the retrieval process, here is a sample query inspired by the post-
Popov scenario of Section 6.9 involving the judge or advocate who faces a future
property law dispute involving a plaintiff’s hunt for an abandoned robotic deep
sea probe frustrated at the last minute by a defendant hacker who intercepts the
probe by overriding its computer. Here is one potentially useful full-text legal
information query:

action for conversion where plaintiff nearly captured an abandoned robotic deep
sea probe but defendant intercepted the probe at the last minute by hacking its
computer

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 215 — #6

Making Legal Information Retrieval Smarter 215

table 7.1. Sample inverted index

ID TEXT

1 An action for conversion involves
a serious interference.

2 The data conversion was
completed.

3 Certain actions may deceive.
4 The probing was unauthorized.
5 The action of Defendant Hack

was unauthorized.

Term Frequency Doc. IDs

action 3 [1][2][5]
alone 1 [5]
certain 1 [3]
completed 1 [2]
conversion 2 [1][2]
data 1 [2]
deceive 1 [3]
defendant 1 [5]
hack 1 [5]
interference 1 [1]
involves 1 [1]
may 1 [3]
probing 1 [1]
serious 1 [1]
unauthorized 2 [4][5]

The system may remove stop words and stems, transforming the query to:

action conversion where plaintiff nearly capture abandon robotic deep sea probe
defendant intercept probe last minute hack computer

Table 7.1 shows how each of five sentences serves as a “document” for indexing
purposes. The sentences would be indexed (after removal of stop words and stems)
in the tiny inverted index at the right.

Even this small example illustrates one of the challenges of legal information
retrieval: words have multiple meanings. Consider the meanings of “action” and
“conversion” in three of the sentences: “An action for conversion involves a seri-
ous interference,” “The data conversion was completed,” and “Certain actions may
deceive.”

In the sample query, “action” and “conversion” are intended to communicate the
user’s expectation that cases involving legal actions for conversion and facts like those
described would be relevant. Each term, however, has multiple meanings. Beside its
legal sense of a proceeding to enforce a claim, “action” can also refer to the fact of
doing something. “Conversion” denotes not only a kind of property law claim, but
also a change or transformation in something. Thus, words are not ideal features for
discriminating relevant from irrelevant documents. Similarly, comparing the five
sentences with the query, one can see that “probe” has multiple meanings. While
the query employs it as a noun, sentence [4] uses it as a verb. Also, “hack” is a proper
name in [5] but the query employs it to refer to interfering with the probe’s computer
system.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 216 — #7

216 Legal Text Analytics

The reader can try out the query on his or her own favorite legal IR system. In
my attempt, the results generated by a commercial legal IR system for the sample
query above do not obviously address cases involving property claims for conversion
and presenting scenarios involving defendants thwarting plaintiff hunters’ capture
of their intended quarries. Perusal of the case reports of the top 20 cases reported on
the IR system’s results list revealed two cases involving claims for conversion among
a range of other claims (e.g., federal Wiretap Act, Electronic Communications Pri-
vacy Act and Computer Fraud and Abuse Act, Copyright, trademark, trade secret,
invasion of privacy, admissibility of computer evidence in criminal trials, a Bivens
remedy, and three cases involving post-CivilWar Abandoned andCaptured Property
Act claims). One can, of course, understand why the cases were retrieved given vari-
ous terms in the query and their alternative senses (e.g., “conversion,” “abandoned,”
“robotic,” “intercepted,” “hacking,” “computer”), but none of the cases appeared to
be useful.

Different models of relevance and their accompanying measures are effective to
varying extents in attempting to deal with this challenge of multiple meanings of
words.

7.5. ir relevance measures

As noted, IR systems have employed Boolean, vector space, and probabilistic
models for assessing documents’ relevance to a query. Of these, the Boolean
relevance measure is the simplest.

7.5.1. Boolean Relevance Measure

In a Boolean relevance measure, a query provides a set of logical criteria for the
documents to be retrieved. The criteria specify the presence, and proximity, of
indicated terms for documents to be responsive. The relevance measure ranks
cases in terms of how completely the query’s Boolean criteria are satisfied (Turtle,
1995, p. 24).

It is not easy to express the above deep sea probe example as a Boolean query, but
one might try the following:

(action w/5 conversion) AND ((captur! w/5 quarry) OR (hunt! w/5 quarry)) AND
((defendant w/5 interfer!) OR (defendant w/5 intercept!))

In the above query, the exclamation marks (!) indicate that the system should
include all words that begin with the indicated root, for instance, “capture,” “cap-
tures,” “captured,” “capturing,” and so forth. Perhaps anticipating the low likelihood
of finding cases involving abandoned probes, the user has also substituted the
broader term “quarry” in hopes that cases involving the capture of other things will
be returned.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 217 — #8

Making Legal Information Retrieval Smarter 217

7.5.2. Vector Space Approach to Relevance

In a vector space approach to relevance, documents and queries can be represented
as “bags of words” and compared as “term vectors” (Turtle, 1995, p. 26). A bag of words
(BOW) representation of a document comprises a collection of terms in no particu-
lar order. Returning to the deep sea probe example, the query might be represented
as a BOW as:

sea capture action where conversion deep computer nearly hack minute robotic
plaintiff abandon defendant probe intercept last

A BOW representation does not preserve the sequential order of terms as they
appear in a sentence. That information about the meaning of the sentence is lost.

Since it would be hard to compare sentences represented as bags of words, one
could place the terms in alphabetical order and represent them in a term vector:

abandon action capture computer conversion deep defendant hack intercept last
minute nearly plaintiff probe robotic sea where

A term vector represents a sentence or other document in terms of its words, cita-
tions, indexing concepts, or other features. It is an arrow from the origin (0,0,0,. . .,0)
to the point representing the case text in a large dimensional space. Since each dif-
ferent term (i.e., a word or other feature) in the full corpus of texts corresponds to
yet another dimension, the number n of dimensions is very large.

As shown in the simple, three-dimensional vector space model of Figure 7.1, a
vector specifies the distance along each dimension to get to the point representing

figure 7.1. Three-dimensional vector space model

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 218 — #9

218 Legal Text Analytics

the whole document. Since any given document lacks many of the terms in the
corpus as a whole, the distance along many dimensions will be zero (0). For the
terms in the document, however, the distance along each dimension to a term will
be one (1) or, in some implementations, a computed magnitude, the word’s tf/idf
weight.

The tf/idf weight is proportional to how many times the related term appears in
the document’s text (i.e., the term frequency (tf)) and inversely related to the num-
ber of times the term appears in the corpus (i.e., its inverse document frequency
(idf)). Thus, a term which appears in both a query and a document adds weight to
the conclusion that the query and document are similar to the extent that the term
appears frequently in the document and rarely in the corpus.

One virtue of the term vector approach is the ease of computing vector space sim-
ilarity (VSS), the similarity among documents or among queries and documents. In
fact, a query is treated as a document for this purpose and is also represented as a term
vector. Placing the terms in a particular (e.g., alphabetical) order, as in the above
example, facilitates automatically comparing term vectors to assess their similarity.
The similarity measure corresponds to the Euclidean distances between the end-
points of the term vectors in the multidimensional space. In determining similarity,
a query is compared to all of the documents retrieved from the inverted index using a
trigonometric calculation. One computes the cosine of the angle between their cor-
responding term vectors. The smaller the cosine, the smaller the angle between the
corresponding term vectors, and, the full-text approach assumes, the more similar in
meaning the texts represented by the vectors.

7.5.3. Probabilistic Model of Relevance

With a probabilistic model of relevance, IR is framed as a problem of evaluating evi-
dence about what a user’s query means, what the documents in the corpus are about,
and which documents will best satisfy the query. The evidence about the content of
the query and of the documents comprises the ways in which they are represented.
This includes the words and phrases they contain, their definitions and synonyms
in dictionaries and thesauri, other features in the documents such as citations and
subject–matter indices, for instance, West digest topics and key numbers, and statis-
tical information. It is as though the contents of the query and documents, that is,
what they mean, cause the observed evidence, namely, how they are represented.
Conversely, how the query and documents are represented, that is, the evidence,
depends on what they mean, the cause.

Introduction to Bayesian Networks
A Bayesian network is a useful tool for modeling situations “in which causality plays
a role but our understanding of what is actually going on is incomplete, so we need to
describe things probabilistically” (Charniak, 1991, p. 51). In the probabilistic model

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 219 — #10

Making Legal Information Retrieval Smarter 219

of relevance implemented in the former West is Natural (WIN) system, for example,
a BN automated inferences about the likelihood that a seeker’s need for information,
as evidenced by his or her query, is satisfied by a particular document in the database
(Turtle, 1995, p. 27).

A BN is a graphical model of probabilistic causal relationships. Each BN node
represents an “event” with a variable to indicate whether it has occurred. The
arcs represent causal influences affecting the likelihood of an event’s occurrence
including conditional probabilities associated with those causal influences. If cer-
tain assumptions are satisfied, one can compute the probability of an event variable
having a certain status given information about the status of its immediately pre-
ceding event variables in the graph. These assumptions include the independence
assumption that each event is conditionally independent of its non-descendants
given its parent variables (Turtle and Croft, 1990, p. 21). This independence assump-
tion reduces the number of probabilities that need to be computed making BNs an
efficient method for modeling causal reasoning.

In his article, “Bayesian Networks without Tears,” Eugene Charniak provided a
prosaic example of a BN, like the one shown in Figure 7.2, whose function was to
help the author on his walk home to determine the likelihood that his family is out
given that he hears the dog barking.

The causal interpretation of the arcs in the diagram is as follows: the prior prob-
ability of the family’s being out is just 15%, but the family’s being out has a direct
causal connection to the dog’s being out, which, in turn, is directly connected to
Charniak’s hearing her. The diagram, however, shows another reason why the dog
would be outside having to do with the dog’s digestive system. The prior probability
of the dog having such a problem is just 1%, but the diagram says that the dog having
a digestive problem can also cause dog-out. In addition, the diagram shows that when

figure 7.2. BN for the family-away problem (see Charniak, 1991, p. 52)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 220 — #11

220 Legal Text Analytics

the family members leave Charniak’s house, they will turn the outside light on 60%
of the time, but that 5% of the time the light will be on even when they are at home,
for example, if they expect a guest (Charniak, 1991, p. 52).

BNs allow one to calculate the conditional probabilities of the nodes in the net-
work given that the values of some of the nodes have been observed. If Charniak
observes that the light is on (light-on = true) but does not hear his dog (hear-bark =
false), he can calculate the conditional probability of family-away given these pieces
of evidence (for this case, it is about 0.5) (Charniak, 1991, p. 52). Details of the
calculation may be found at Brachman and Levesque (2004, p. 248).

Using a Bayesian Network to Assess Relevance in IR
As noted, a BN is a convenient tool for evaluating evidence in a causal chain. It
can deal with a legal IR system’s uncertainty about what the user’s query means
or what the documents in its collection are about. The BN’s nodes represent the
probability that a user’s query term correctly describes a set of documents based only
on information about the concepts that represent that set of documents (Turtle and
Croft, 1990; Turtle, 1995, p. 33). Using the network, an IR system can compute the
likelihood that a particular document is relevant to a query.

A BN for an information retrieval system, shown in Figure 7.3, has two parts. The
first part, a query network, shown at the bottom of the figure, is constructed when
the user submits the query. It results from the system’s processing of the query text
and representing it in terms of query concepts (words, citations, etc.) The query may
be expanded (see below) using an ontology or thesaurus to link a particular query
concept to synonymous representation concepts.

figure 7.3. Inference network retrieval model (see Turtle, 1995, p. 33)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 221 — #12

Making Legal Information Retrieval Smarter 221

The query network is then hooked up with the document network (at the top),
which has been constructed beforehand, and which does not change as the query is
processed. The nodes and arcs from the query node up through the document nodes
represent various conditional probability relationships. The likelihood that the user’s
particular information need has been met depends on the query components. The
likelihood of observing a particular query component depends on the query features.
The likelihood of observing a particular query feature depends on the document
features. The likelihood of observing a particular document feature depends on the
documents.

The prior probability that any particular document Doci will be observed is one
over the number of documents in the corpus. In other words, before taking the query
into account, the prior probability that any document will be responsive is assumed
to be uniformly random (Turtle and Croft, 1990).

Tf/idf values associated with the document feature representations in the inverted
index are used to estimate these conditional probabilities. By assuming each doc-
ument Doci has been observed, in turn, the BN computes the chances that the
Information Need has been met by Doci. The system then ranks the documents
by the magnitude of the probabilities and returns to the user an ordered listing of
the most likely relevant documents (Turtle, 1995).

Commercial legal IR systems have improved upon the use of BNs for relevance
assessment (see, for example, Section 7.7). Nevertheless, an inference network IR
approach using BNs represented an advance in effectively employing term frequency
information to assess relevance. One could also use BNs to simulate the Boolean and
vector space models for assessing relevance (Turtle, 1995, p. 32).

The question arose, however, just how well do full-text legal information retrieval
systems work, a question that is still relevant today.

7.6. assessing legal ir systems

An initial issue for assessing legal IR systems is how to measure their performance.
Section 4.4.4 has already presented the classic information retrieval measures in
explaining how to assess the performance of ML classifiers. In the information
retrieval realm:

True Negatives (TN): the number of documents that are irrelevant and were
predicted as irrelevant.

True Positives (TP): the number of documents that are relevant and were predicted
as relevant.

False Negatives (FN): the number of documents that are relevant but were
predicted as irrelevant.

False Positives (FP): the number of documents that are irrelevant but were
predicted as relevant.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 222 — #13

222 Legal Text Analytics

The performance of IR systems, then, is usually measured in terms of:

Precision: the ratio of the number of relevant documents retrieved over the number
of all documents retrieved.

P=
|Relevant ∩ Retrieved|

|Retrieved|
=(TP)/(TP+ FP)

Recall: the ratio of the number of relevant documents retrieved over the number
of all relevant documents in the corpus.

R=
|Relevant ∩ Retrieved|

|Relevant|
=(TP)/(TP+ FN)

F1 Measure: the harmonic mean of precision and recall where both measures are
treated as equally important.

F1= 2 ∗ P ∗ R
P+ R

=
2 ∗ TP

2 ∗ TP+ FN+ FP

Elusion: the proportion of unretrieved documents that are relevant.

E=
|Relevant ∩ Unretrieved|

|Unretrieved|
=(FN)/(TN+ FN)

The elusion measure is important in assessing the effectiveness of information
retrieval in e-discovery discussed in the next chapter (see Oard and Webber, 2013,
pp. 152–4).

Virtually all IR systems retrieve documents and then rank them. Metrics for
evaluating how well an IR system ranks retrieved documents will be defined in
Section 11.4.1.

In IR systems generally, there is a trade-off between precision and recall. A less
restrictive search returns more documents, but a greater fraction of them will be
irrelevant (higher recall and lower precision). Conversely, a more restrictive search
returns fewer documents, but a greater fraction of them will be relevant (lower
recall and higher precision). Even though the trade-off cannot be avoided, there
are strategies for improving both precision and recall at the same time. For instance,
multistage retrieval processes that use a retrieved set of documents for a subsequent
more refined search have yielded improvements in both precision and recall (see
Buckland and Gey, 1994, pp. 18–19). (An example of such a strategy in IR systems is
“relevance feedback” (see Section 7.9.2)).

In an early landmark study, Blair and Maron (1985) tested IBM’s STAIRS full-text
IR system. STAIRS applied a Boolean search model of relevance with a database of
about 40,000 documents to be used in defending a large corporate law suit.

Blair and Maron employed precision and recall to evaluate the IR system. In com-
puting precision, the lawyers who created the queries judged whether the documents

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 223 — #14

Making Legal Information Retrieval Smarter 223

retrieved were relevant. In assessing recall, random samples from sets of unretrieved
documents were extracted and the attorneys determined, in a blind test, whether the
documents were relevant (Blair and Maron, 1985, p. 291).

The study revealed that, while precision averaged at 75.5%, recall was very low;
on average, STAIRS retrieved only 20% of relevant documents (Blair and Maron,
1985, p. 293). This level of recall contrasted sharply with what the attorneys using
the system believed they were getting: namely 75% of the relevant documents. The
authors attributed the low recall to the fact that so many terms have synonyms, that
the documents contained oblique references, and successive search modifications
to make queries more precise tended to skew searches, leaving out many relevant
documents.

In the decade after the Blair and Maron’s study, full-text legal IR systems like
LEXIS and WIN applied the probabilistic model of relevance described above to
corpora of legal cases. This development led Dan Dabney to update the Blair and
Maron’s study in 1993.

Dabney’s study involved a large corpus of legal cases, not litigation documents.
In particular, he employed LEXIS and WESTLAW to retrieve all of the state cases
within the scope of 23 articles of a volume of the American Law Reports (ALR),
a reference work that contains in-depth articles on narrow topics of the law. ALR
articles, called “annotations,” cite relevant cases on the topic.

Dabney, an expert legal researcher, crafted a query for each of 23 test questions,
one for each ALR article. Each query aimed to retrieve the maximum number of
relevant cases from LEXIS and WESTLAW without retrieving too many irrelevant
cases. He then compared the final list of cases returned to the complete list of state
cases that were cited by the ALR article and that were known to be contained in the
corresponding database (Dabney, 1993, pp. 105–6).

Significantly, Dabney’s result was not that much different from that of Blair and
Maron (Dabney, 1993). Dabney’s study showed that the 20% recall found by Blair
and Maron could be improved, up to 40% recall, but at the sacrifice of precision. As
Dabney concluded, “Most practitioners feel that the 20% recall found by Blair and
Maron is alarmingly low, and many will feel that the 40% recall found here is not
much better, particularly in light of the substantial loss of precision” (Dabney, 1993,
pp. 126–7).

While the technology of legal IR systems for case retrieval continues to improve,
there seems to have been no recent published reevaluations along the lines of these
two studies.

7.7. recent developments in legal ir systems

In state-of-the-art legal information retrieval systems like WN, some of the above
document retrieval functionality is employed, but the ranking of documents for
presentation to the user is different (Lu and Conrad, 2013).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 224 — #15

224 Legal Text Analytics

Ranking uses evidence derived from frequency information in the documents’
texts, but WN’s reranking function takes additional features into consideration,
including:

– Evidence from expert-generated annotations (e.g., related to West’s Key
Number System)

– Citation networks of citing and cited sources 2

– Information about documents’ popularity and usage given aggregate informa-
tion from previous users’ queries.

In addition, the ranking function “learns how to weigh the ‘features’ represent-
ing this evidence in a manner that will produce the best (i.e., highest precision)
ranking of the documents retrieved” (Lu and Conrad, 2013). Applying ML to text
is explained and illustrated in Chapter 8. Presumably, a ML model is trained with
either gold standard rankings of cases retrieved for test queries or some other form of
supervision such as feedback from observation of how users behave after receiving
results.

Finally, WN uses information about legal issues deemed relevant to the query to
recommend documents on related issues.

Recently, LexisNexis’s Paul Zhang and his colleagues have developed techniques
for semantically annotating legal case texts to support more intelligent, concept-
based legal IR. They undertake “a rigorous semantic annotation process of legal
documents, during which various text units are identified, normalized into ‘standard’
forms and properly indexed” (Zhang, 2015).

Similar to a hierarchical type system as described in Section 6.8, the annotations
involve four layers of metadata:

1. Generic lexical level
2. Basic legal concept level
3. Legal issue level
4. Verb-predication level

At the generic lexical level, the forms of the words and phrases (i.e., their mor-
phology) are normalized, that is, put into a standard form with respect to spelling
variations and phraseology.

For the level of basic legal concepts, LexisNexis has developed a universal list of
legal concepts across the entire corpus. Zhang defines “legal concept” operationally
as an idea shared in common by sets of words or phrases across frequent legal dis-
cussions. Legal concepts in documents are identified and matched to concept IDs
in the universal list.

2 Relevance ranking in FastCase, another commercial legal IR service, also takes into account citation
frequency and the relative importance of a citation (Remus and Levy, 2015, p. 24).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 225 — #16

Making Legal Information Retrieval Smarter 225

The process of constructing the universal concept list combines automatic and
manual analysis. The process involves n-grams, contiguous sequences of n items
(e.g., words) from a given text sequence. A LexisNexis team:

1. produces candidate concepts from the corpus of U.S. legal document n-grams
(using data-mining).

2. filters the n-grams with linguistic rules focusing on noun phrases (NPs) and
taking into account their distribution in the corpus.

3. groups the terms sharing the same meaning and, for each group, selects one
term based on frequency and simple rules as the normal form to represent the
concept.

4. appliesmanual editing to add/pair terms where necessary, to edit out unwanted
terms or groups, and to select legal concepts (Zhang et al., 2014).

The resulting concepts in normal form are somewhat more abstract than sur-
face language expressions of the concepts. These concepts range from those used in
legal principles, doctrines, and jargon to factual concepts (i.e., important, frequently
discussed factual terms) (Zhang et al., 2014).

LexisNexis maintains a legal issue library that contains standardized legal issues
with links to case discussions of that issue. A legal issue is defined as a “statement
of belief, opinion, a principle, etc. It usually contains one or more ‘Concepts’ to be
meaningful” (Zhang et al., 2014). Legal issues are related to the reasons why one case
cites another case or statute. LexisNexis has a patented process for extracting such
reasons and legal issues. Texts in cases that are on the same legal issue are identified
and linked to a standard entry in the legal issue library and indexed as such.

Zhang provides the following examples illustrating legal issues and concepts.
Since

Statement: “Thirteen-year-olds should not own a vehicle” . . . has at least three Con-
cepts in it: “13-year-old,” “vehicle,” and “to own”; . . . the author or speaker states
clearly an opinion, a belief, or a piece of law . . . [and] such a statement has [a] legal
implication, it is a Legal Issue. Here are examples of Legal Issues found in cases . . .
[where the] Concept “vehicle,” . . . is used . . .:

a. “A police officer may approach a stopped vehicle and inquire about an occupant’s
well-being without intruding on the Fourth Amendment.”
b. “In Nebraska, a vehicle can be a tool of the debtor’s trade if the debtor uses it in
connection with or to commute to work.”
c. “State law governs the issue of security interests in motor vehicles.”
d. “In Idaho, it is a felony to purport to sell or transfer a vehicle without delivering
to the purchaser or transferee a certificate of title duly assigned to the purchaser.”
(Zhang et al., 2014)

The predication level annotates cases in terms of verb-centered predicates
(so-called “V-Triples”), which seem to be an effective way to abstract the meaning

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 226 — #17

226 Legal Text Analytics

of a sentence. The sentences are parsed into syntactic trees and then converted into
these predicate structures.

These four levels of metadata annotations comprise a derived representation of
legal documents in terms of semantic information standardized across the whole
database, which can be used for conceptual information retrieval. Reportedly, the
annotation scheme has been, or will soon be, incorporated into the commercial
LexisNexis system and used for semantics-based searching of documents, classifica-
tion, information about reasons for citation, as well as for concept map and citation
network browsing (see Zhang et al., 2014; Zhang, 2015).

7.8. comparing legal ir and cmlas

Information retrieval has a significant advantage over AI & Law computational
models of legal argument. Given new case texts submitted by courts in digital form,
adding new cases to the inverted index is automatic. No human interpretation or
intervention is required to prepare the case text for use with the IR system’s measure
of relevance. The system can assess the tf/idf measure automatically. As a result,
Lexis and Westlaw process millions of case texts automatically.

On the other hand, IR relevance measures do not capture all of the elements
of legal relevance that they could. Beyond highlighting query terms, an IR system
cannot compare cases because it lacks a representation of what features are legally
important. It does not even “know” which side won a case or with respect to which
claims or issues. As a result, an IR system cannot infer from the retrieved cases how
the problem should be decided, predict an outcome, or make arguments for and
against an outcome.

The computational models of Part I do capture these aspects of legal relevance.
They can compare cases in legally meaningful ways and make predictions about
outcomes and arguments for and against such outcomes. These models, however,
work with, at most, hundreds of cases that have been manually represented. This is
the problem of the knowledge representation bottleneck.When new cases are added
to a CMLA, they, too, must be represented by hand.

Ideally, these complementary strengths of full-text legal information retrieval and
AI & Law approaches can be combined.

7.9. improving legal ir with ai & law approaches

Chapters 10 through 12 present some ways in which that may be accomplished using
LUIMA and other open-source tools now available, but first it may be useful to exam-
ine some previous efforts to improve full-text legal information retrieval by adding
legal knowledge through AI & Law techniques.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 227 — #18

Making Legal Information Retrieval Smarter 227

7.9.1. Integrating Legal Ontologies and IR

The first of these techniques involves using legal ontologies for the purpose of query
expansion. Given the terms in a query, a program searches a legal ontology to find
synonyms or related terms and expands the query accordingly.

For example, Saravanan et al. (2009) employed a legal ontology of Indian law
regarding rent control, income tax, and sales tax to automatically expand user
queries. Upon receiving a user query containing the term “rental arrears,” the
retrieval system would collect linked concept entries in the ontology including “rent
in arrears,” “default of payment of rent,” and other related terms or phrases and
use them to expand the query. Similarly, a query for “increase in rent” would be
expanded to include “exorbitant rent” and “enhancement of rent.”

The authors evaluated versions of the retrieval system with and without the auto-
matic query expansion. They compared the versions’ results against a gold standard
set of documents relevant for each of two sets of queries. The results demonstrated
improvements in both precision and recall attributable to the ontology-based query
expansion (Saravanan et al., 2009).

A related use of a legal ontology is to provide a semantic markup of text compo-
nents in a corpus in order to improve information retrieval. This was illustrated in
Section 6.3.1. An IR system for criminal law hearings supported a measure of intelli-
gent retrieval with indexing and search based on the e-Court ontology. Documents
were annotated and tagged using terms from the legal ontology dealing with criminal
procedure. Users could browse the ontology to more concretely specify conceptual
requirements for documents they were seeking (Breuker et al., 2002).

The LUIMA type system (Section 6.8), is a kind of ontology used to semantically
annotate legal argument roles of sentences in legal cases. As discussed in Section 11.4,
LUIMA annotations have been shown to improve reranking performance in a full-
text legal IR system for vaccine injury cases.

7.9.2. Integrating Legal IR and AI & Law Relevance Measures

Two projects have taken steps toward integrating AI & Law measures of relevance
with retrieval of textual cases.

In the first one, SPIRE, a user could input a new problem as a set of legal factors.
The program would then retrieve cases, from a full-text legal IR system, that shared
the factors, and highlight their passages relevant to the factors of interest. Signifi-
cantly, the retrieved cases were not previously in SPIRE’s database. In other words,
SPIRE used a CMLR like Hypo or CATO to retrieve relevant cases from a legal IR
system like Lexis or Westlaw (Daniels and Rissland, 1997a,b).

SPIRE dealt with an issue in bankruptcy law of whether a debtor had submitted
in “good faith” a plan to settle with the creditors. The researchers identified in the
caselaw 10 factor-like features that influenced courts’ decisions of good faith, such as

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 228 — #19

228 Legal Text Analytics

figure 7.4. Architecture of SPIRE (Daniels and Rissland, 1997a)

the plan’s duration, the debtor’s sincerity, the debtor’s prospects for future income,
and any special circumstances. For each of these factors, the researchers assembled
from 3 to 14 excerpts from cases where the courts indicated that or how they took
the factor into account. For instance, for future income, that is, whether the debtor’s
income is likely to increase in the future, the excerpt might be negative or positive:
“the Court cannot see any likelihood of future increases,” “the prospect of a regular
job with substantially increased income is not great,” “her health brings into ques-
tion her future ability to work,” or “no evidence that raises are likely” (Daniels and
Rissland, 1997a, p. 43).

SPIRE’s architecture is shown in Figure 7.4. SPIRE had two loops : an outer loop,
in which it retrieved case opinions from a full-text legal IR system like Lexis or West-
law, and an inner loop, in which it identified in retrieved opinions the passages
relevant to factors of interest. Each loop had a separate database. The outer loop
database contained bankruptcy cases on the issue of whether debtors had submitted
settlement plans in good faith. These cases were represented in terms of the 10 legal
factors relevant to the good faith issue. In addition, the database stored the text of
each case. The database for SPIRE’s inner loop contained the short passages associ-
ated with factors. These excerpts were manually extracted from the bankruptcy cases
(Daniels and Rissland, 1997a,b).

As illustrated in Figure 7.4, given a new problem input as a set of factors, SPIRE
retrieved relevant cases from the case database, organized them into a claim lattice,
and selected themost on point cases (see Section 3.3.2). Up to this point, the program
used Hypo-style case-based reasoning.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 229 — #20

Making Legal Information Retrieval Smarter 229

SPIRE then passed the texts of the most on point cases to a full-text IR system
called INQUERY (Callan et al., 1992). INQUERY’s database comprised legal texts
from an IR corpus like that of Lexis or Westlaw.

In particular, SPIRE passed these case texts to INQUERY’s relevance feedback
module. In effect, the case texts seeded a query instructing INQUERY’s relevance
feedbackmodule to retrievemore texts from its database that were like the seed cases.
A relevance feedbackmodule enables users to indicate which documents, returned in
response to a query, are, in fact, relevant and best represent what the user is looking
for. The IR system extracts information such as additional terms from those feedback
selections to augment the query and find other similarly relevant documents (Turtle,
1995, p. 40).

INQUERY retrieved these potentially relevant cases and passed them to SPIRE’s
inner loop for purposes of highlighting passages relevant to the factors input by the
user (see dashed arrow in Figure 7.4). For each factor of interest, SPIRE extracted
text excerpts from the inner loop’s passage database. It assembled the passages associ-
ated with the factor of interest into a query submitted again to INQUERY’s relevance
feedback module. This time, however, INQUERY’s database comprised the texts of
just the potentially relevant cases it had previously retrieved. In effect, the passage
query instructs INQUERY to retrieve from the potentially relevant cases more pas-
sages like those in the query. INQUERY returned the most relevant factor-related
passages, they are highlighted in the potentially relevant cases, and the cases are
returned to the user (Daniels and Rissland, 1997a).

The researchers evaluated SPIRE by the extent to which its ordering of factor-
related passages, retrieved in response to queries, reduces the amount of wasted effort
as users examine the retrieved passages. This is measured in terms of expected search
length, the number of irrelevant items a user encounters before finding a specified
number of relevant ones, here set as 1, 3, or 5 relevant passages. Using a test set of 20
documents, two sets of individual factor-focused queries prepared by the researchers,
and a set of such queries generated by a human expert, the researchers found that
SPIRE reduced the search by about 4, 10, or 11 items per factor (Daniels and Rissland,
1997b, p. 335).

SPIRE represented a novel way to connect an AI & Law system like Hypo or
CATO with a full-text IR system. In trials, it successfully found new cases in an IR
corpus that were similar to the inputted cases from SPIRE’s database.

This connection also suggests how to update a factor-based case base of a CMLR
or CMLA, at least in a semiautomated procedure. Periodically, using SPIRE’s exist-
ing cases as inputs, one could retrieve new cases from a Lexis or Westlaw corpus that
share the same factors as an input case and highlight the passages that relate to those
factors. Guided by the highlighting, humans could examine the potentially rele-
vant new cases, confirm their relevance, and enter them into SPIRE’s case database
(Daniels and Rissland, 1997a). From there, a CMLR like CATO, IBP, or CMLA
like VJAP could use them to predict outcomes or make arguments as discussed in

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 230 — #21

230 Legal Text Analytics

Sections 4.5.2 and 5.7. The method assumes, of course, the existence of a database
of cases represented as factors and a database of passages associated with factors.

7.9.3. Augmenting Legal IR Relevance Assessment with Citation Networks

As indicated in Section 7.7, both WN and LexisNexis make use of citation links
in a network of citations to improve legal information retrieval. An early AI & Law
project, SCALIR, demonstrated a way to take citation links into account to enhance
relevance assessment (Rose and Belew, 1991). It comprised a networked database
of nodes representing cases, statutes, and their composite terms. As its relevance
measure for retrieval, it employed the spread and magnitude of a quantity called
“activation” (defined below) through this network.

SCALIR presents users with an interactive graphical interface in which they can
label initial nodes with terms of interest. In response, the system displayed cases
and terms in the corpus to which the inputs relate with the most relevant nodes at
the center and less relevant nodes toward the edges (see Figure 7.5). By clicking on
displayed nodes, users can indicate nodes of special interest and a relevance feedback
mechanism expands or prunes the search accordingly.

SCALIR contained the texts of cases (1,361 federal cases), statutes (87 sections of
Copyright Act), and a library of terms (6,160 terms). Each of these is represented as a
node (7,608 nodes) in a network interlinked with three kinds of links. C-links show
that a case includes a term. S-links indicate that a statute is part of another statute
or refers to it, that a term is related to another term, or that a case cites or overrules
another case. H-links show that a case has some intermediate effect on another case
(Rose and Belew, 1991).

figure 7.5. Retrieval for “videocassette” (see Rose and Belew, 1991)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 231 — #22

Making Legal Information Retrieval Smarter 231

When a user inputs a query with terms of interest, the nodes in the network cor-
responding to the specified terms each receive a certain amount of “activity.” This
begins a process of spreading activation in which the activated nodes associated with
query terms send activation to the nodes to which they are linked. The spreading
activation, however, is subject to the weight on the link and passes along the link
only if the sum of the sender activations is above the certain threshold. The weight
on a C-link from a term to a document depends inversely on the frequency of docu-
ments with that term. S-links are selective as to which activations they will pass along
(Rose and Belew, 1991).

These linkages, weights, and thresholds determine the way in which the system
discriminates among the nodes in terms of relevance to a query. After the spreading
activation subsides, for any node, the system sums the inputted activations, tests if it
is above a threshold, orders the nodes in terms of their activation levels, and presents
them graphically as relevant. The user can refocus the search by marking the nodes
for feedback (Rose and Belew, 1991).

The connectionist network approach is a step toward conceptual information
retrieval (Section 1.3.2). In trials, a query for “videocassette” returned the sources
shown in Figure 7.5. The search retrieved a relevant case, Sony v. Universal, even
though the term was not literally present in the Sony case text. In other words, the
links enabled conceptual retrieval even where the concept did not appear expressly.
The links were indirect through another case that linked the concepts, that is, from
“videocassette” to the Cohen case to “television” and “home” to the Sony case.

Getting the links, weights, and thresholds right can be tricky. In the instance of
“videocassette,” the linkage to the Sony case was less direct than the authors thought
it could have been. As noted, the links were indirect through another case (theCohen
case) to television and home to the Sony case. Linkages did not appear for the con-
cepts “VCR,” “Betamax,” and “VTR,” which were explicitly mentioned in the Sony
case but did not appear in the response set, as the authors had hoped they would.

Nevertheless, citation networks are a potent source of information for concep-
tual information retrieval. Another AI & Law program, BankXX, made use of a legal
network of bankruptcy law information. The network comprised nodes for cases, rep-
resenting them as sets of linked legal factors, bundles of citations, prototypical stories,
and legal theories, which were also represented with legal factors. The program’s
goal was to construct an argument by searching the network for information corre-
sponding to 12 types of argument building blocks, including cases for and against
the arguer’s goal. Three evaluation functions guided the best first search through
the network, and the resulting arguments were assessed in terms of eight argument
factors, including the win record of the theory used, the strength of the citations, and
the strength of the best case analogies.

An empirical evaluation of how well BankXX, starting with a decided case,
came up with argument elements apparent in the corresponding judicial decision,
yielded positive results (Rissland et al., 1996). The work is an early example of using

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 232 — #23

232 Legal Text Analytics

argument concepts to define relevance in more legal semantic terms in support of a
kind of conceptual retrieval.

7.9.4. Detecting Concept Change

The meanings of legal concepts may change as courts apply them in new fact situa-
tions over time. Rissland and Friedman (1995) developed an ingenious approach to
detecting concept change in cases stored in an information retrieval database.

The project dealt with the legal issue of whether a debtor in bankruptcy has sub-
mitted a plan in good faith as required in personal bankruptcy law (11 U.S. Code,
chapter 13, the same domain as in SPIRE, Section 7.9.2). They created a chronolog-
ically ordered 10-year “example-stream” of 55 cases regarding the issue of good faith
submission from the BankXX project (Rissland et al., 1996).

Each case was represented not as text but as a vector of 61 features, for
example, debtors, debts, creditors, employment, cash flow, proposed payments,
amount of debtor’s surplus, percentage repayment of unsecured debt, and inac-
curacies in debtor’s representations. Some of these features were associated with
legal factors introduced in appellate cases interpreting the good faith requirement
and used in the BankXX case representation, such as percent-surplus-of-income-
factor, employment-history-factor, earnings-potential-factor, plan-duration-factor,
plan-accuracy-factor, relative-total-payment-amount-factor, inaccuracies-to-mislead-
factor, and motivation-sincerity-factor (Rissland et al., 1996).

The researchers input each case vector in chronological order to C4.5 (see Sec-
tion 4.3.1) a ML algorithm, which outputs a decision-tree representing the concept
of good faith up to that point in time. Each decision tree node is a leaf node indicat-
ing whether good faith was satisfied (or not) or a test on an attribute. Tests focused
on, for instance, whether the duration of a proposed plan or the amount of payments
and surplus exceeded certain amounts, or on the debtor’s motivation and sincerity.

A program compared each new decision tree’s representation of the concept of
good faith and the prior decision tree to detect any structural changes. In deci-
sion trees, concepts can be generalized by adding a disjunct or deleting a conjunct.
Removing a disjunct or adding a conjunct narrows a concept. In addition, a concept
attribute’s relevance can change, for instance, the attribute can appear or disappear,
or its value can be inverted. In particular, the program compared values that occur
at each location in the old and new trees and measured the extent to which any
attributes moved, appeared, or disappeared.

The researchers developed a structural-instability metric to detect concept change.
It summed the changes at each level of trees and computed a weighted sum of
changes over all levels. Since, given information theoretic measures used in deci-
sion tree algorithms, more predictive attributes occur higher up in a tree (closer to
the root), the instability metric gave more weight to changes in attributes at higher
levels.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C07” — 2017/5/27 — 11:39 — page 233 — #24

Making Legal Information Retrieval Smarter 233

The program averaged summations of change across each successive pair of trees
and examined them for statistically significant changes in slope or trends. A negative
slope indicated that conceptual instability is decreasing. A positive slope indicated
increasing instability leading the system to pose a hypothesis that the meaning of the
legal concept is drifting.

In order to test the hypothesis of concept drift, the researchers continually updated
the older tree, formed a possible replacement tree, and compared their predictions
over the next 12 examples. If the new tree was more predictive, it confirmed the
concept’s drift. The authors compared the program’s detections of concept drift and
confirmed its rough correspondence to the historical record of decisions.

As the authors pointed out, their “method is very general and can be used in
conjunction with many incremental learning algorithms” (Rissland and Friedman,
1995). If the relevant features and legal factors can be annotated in the texts of the
cases, a similar method could help a legal app autonomously to detect opportunities
for posing and testing hypotheses that a legal concept has changed its meaning (see
Section 12.6).

7.10. conclusion

While the improvements in state-of-the-art commercial legal IR have been signif-
icant, and the efforts to integrate AI & Law techniques and legal IR systems are
promising, they do not address two important areas: (1) capturing the roles that
sentences play in legal arguments and (2) using those roles to support conceptual
legal IR.

As illustrated in Section 6.8, the argument roles sentences play in legal deci-
sions include citing legal authorities, stating legal rules in the abstract, reporting a
decision-maker’s legal rulings or holdings with respect to those rules, and recording
the decision-maker’s finding on whether or not evidence in a particular case proves
that a rule condition has been satisfied.

If these sentence roles could be identified in the texts of cases that an IR system
retrieves in response to user queries, they would provide information useful for rank-
ing the retrieved cases and highlighting the most relevant passages given the legal
researcher’s intended use of the information in an argument. They could also help an
IR system identify legal semantic information in case texts such as legal factors that
could support legal apps in assisting humans to predict outcomes, make arguments,
and test hypotheses.

These ideas will be developed in Chapters 10 through 12, but we first need to learn
more about applying ML to legal texts and extracting information about legal rules
from statutory and regulatory texts.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.007
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:22:40, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.007
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 234 — #1

8

Machine Learning with Legal Texts

8.1. introduction

In the examples of ML so far, a program has learned from data about judges, trends,
or cases as in the Supreme Court Database, but not from the texts of cases or other
legal documents. This chapter introduces applying ML algorithms to corpora of
legal texts, discusses how ML models implicitly represent users’ hypotheses about
relevance, illustrates how ML can improve full-text legal information retrieval, and
explains its role in conceptual information retrieval and in cognitive computing. The
chapter also distinguishes between supervised and unsupervised ML from text and
discusses techniques for automating learning of structure and semantics from legal
documents.

Along the way, the chapter answers the following questions: How can ML be
applied to textual data? What is the difference between supervised and unsupervised
ML from texts? What is predictive coding? How well does predictive coding work?
What is “information extraction” from text? How are texts represented for purposes
of applying ML? What is a “support vector machine (SVM)” and why use one with
textual data?

8.2. applying machine learning to textual data

ML algorithms identify patterns in data, summarize the patterns in a model, and
use the models to make predictions by identifying the same patterns in new data
(see Kohavi and Provost, 1998).

A model is a structure that summarizes the patterns in data in some statistical or
logical form in which it can be applied to new data (see Kohavi and Provost, 1998).
This book has already introduced some examples ofMLmodels, such as the decision
tree for bail decisions in Figure 4.2 or the random forests of decision trees referred
to in Section 4.4.

234
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 235 — #2

Machine Learning with Legal Texts 235

The models capture the strength of the association in the patterns between
observed features and an outcome feature. For example, the decision on bail is an
outcome feature, and the observed features included whether the offense involved
drugs or the offender had a prior record. The Supreme Court’s decision to affirm
or not is an outcome feature, and the observed features included a justice’s gender
or the appointing president’s party. The model captures the strength of the associ-
ation in the patterns between observation and outcome features either statistically,
logically, or in some combination of the two.

As noted, themodel learned in Section 4.4, predicted outcomes of SupremeCourt
cases, but not based on features of their texts. This chapter (and the remainder of Part
II) focuses on applications of ML where the data are primarily texts: litigation docu-
ments, legal case decisions, or statutory provisions. The features of the texts include
the terms they employ and, possibly, grammatical constructs and some semantic
information. The algorithms identify patterns of these features in the texts, summa-
rize the patterns in models, and use the models to predict outcomes of, or to assign
labels to, new texts.

As an introduction, we first examine a basic setup for applying ML to legal texts
(Section 8.3). We then examine document retrieval in e-discovery, where ML algo-
rithms learn users’ relevance criteria. A model assigns labels to documents such as
“relevant” to the claims under litigation or “not relevant” (Section 8.4).

The sample program in Section 8.5.1 deals with extracting information from a
commercial IR system’s corpus of legal cases. An ML system helps assign labels to
cases indicating that a case is “related to the same litigation as a given prior case.”
The features include the similarity and distinctiveness of titles and whether history
language appears that directly connects the texts. The model identifies patterns asso-
ciated with these and other features and how strongly they predict that two cases are
part of the same litigation.

This example lays a foundation for understanding how to learn some rhetori-
cal structures in legal cases such as distinguishing a section that discusses the law
from one that discusses case facts (Section 8.6). The models in other ML systems
discussed inChapter 10 assign labels indicating a sentence’s argument role, for exam-
ple as an “evidence-based finding of fact,” or outcomes such as “plaintiff wins” or
“plaintiff loses.”

Finally, an example in Section 8.7 applies an ML approach from e-discovery to
a corpus of statutory provisions. The model can assign labels of “relevant” or “not
relevant” to an issue for statutory analysis. This lays a foundation for understand-
ing other programs in Chapter 9 that apply ML and other techniques to extracting
information from statutes.

Applying ML to legal texts will play key roles in a legal app for cognitive com-
puting. One goal in cognitive computing is for ML algorithms to learn to identify
patterns of textual features that are important for human problem-solving. This also
involves identifying contexts and problems for which these patterns are most useful

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 236 — #3

236 Legal Text Analytics

and the strengths of association between the observed and outcome features. The
cognitive computing environment can then use these patterns for prediction and
classification as human users solve new problems.

8.3. a basic setup for applying ml to legal texts

This section describes a basic setup for applying ML to a corpus of legal texts and
evaluating it (Savelka and Grabmair, 2015). The goal of the setup is to transform a
text corpus into a vector space model (see Section 7.5.2) suitable for applying an ML
algorithm. While a detailed description is beyond the scope of this book, this section
provides a sketch of what is involved.

The first step is to collect and process the raw data, a corpus of natural language
legal texts (see Fagan, 2016, p. 34). Online services like CourtListener are a source
of digital legal texts. Since downloading individual files takes too long, downloading
files in bulk is preferred if not restricted by license. Although commercial licenses
frequently do proscribe bulk downloading, CourtListener permits it and provides
instructions1 (Fagan, 2016, p. 35).

The next step is to transform the raw text data using some linguistic processing to
tokenize, normalize, and annotate the texts.

Normalization involves converting words to lower case and stemming them to
their uninflected roots in order to eliminate superficial variations (Turney and
Pantel, 2010, p.154). For example, “Phelps” is converted to “phelps.” “Swimming”
and “swam” are converted to “swim.”

Tokenizing texts involves transforming words that are hyphenated, have apostro-
phes, or have other punctuation, into standard forms. Tokenizing also frequently
involves eliminating stop words, “high-frequency words with relatively low informa-
tion content, such as function words (e.g., of, the, and) and pronouns (e.g., them,
who, that)” (Turney and Pantel, 2010, p. 154).

Tokenization can present some subtleties. For instance, “Michael” (with a
comma) is commonly transformed to “michael.” “Michael’s” with an apostrophe,
however, may be a possessive form or a contraction. Different text processing systems
employ different rules for tokenizing words like this, which may or may not preserve
the semantic distinction. The choice of stop words can also have an effect on mean-
ing. In some contexts, for example web search, frequently appearing short words like
“and,” “any,” “not,” and “or” may be treated as stop words, but in a legal context they
often convey significant information content. In practice, text processing systems
implement default rules for tokenization, which may need to be examined in light
of the legal application.

Another aspect of tokenization involves the treatment of adjacent words. Neigh-
boring words may be treated as n-grams, that is, as tokens of n words (Fagan, 2016,

1 www.courtlistener.com/api/bulk-info/

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 237 — #4

Machine Learning with Legal Texts 237

p. 54). A bigram treats two adjacent words as a single token. For instance, “Four score
and seven years ago” can be represented in five bigrams: “four score,” “score and,”
“and seven,” “seven years,” “years ago.” It can also be represented in four trigrams:
“four score and,” “score and seven,” “and seven years,” and “seven years ago.”

Annotation involves adding information that may help to disambiguate similar
words in a text. Useful annotations include the sense in which an ambiguous word
is used in the text (sense tagging). Other annotations are words’ parts of speech
in the text, that is, nouns, verbs, adjectives, or adverbs (POS tagging). One can
also annotate the words’ grammatical roles in the parsed sentences’ structures,
such as direct object or object of a prepositional phrase (see Turney and Pantel,
2010, p. 155).

After a document’s text is normalized, tokenized, and annotated, it is represented
as a feature vector. This representation is similar to a term vector (see Section 7.5.2).
In a feature vector, however, the features can include additional information such
as bigrams or other n-grams as well as category information.

The feature vectors representing documents in a corpus all have the same length
n equal to the total number of words and other features in the corpus. Each feature
vector is an arrow from the origin (0,0,0, . . ., 0) to the point representing the docu-
ment in an n-dimensional feature space. Since each different word or other feature
in the full corpus of texts corresponds to yet another dimension, the number n of
dimensions will be very large.

The magnitudes along each of the dimensions are the values of the features for
that document. The magnitude may be “0” indicating that the document does not
have that feature or “1” indicating that it does. Alternatively, the magnitude may
indicate the frequency of the word or other feature in the document (see Fagan,
2016, p. 53), or its tf/idf value (see Sections 6.4 and 7.5.2) representing its frequency
in the document discounted by its frequency in the corpus (see Turney and Pantel,
2010, p. 156).

The goal of ML from legal texts is to classify documents or to make predictions.
In an e-discovery context, for instance, the goal is to classify a litigation-related doc-
ument as “relevant” or “irrelevant.” In a context involving ML from legal cases,
the goal may be to classify sentences by the role they play in a legal opinion, for
example, as a “Legal Ruling or Holding of Law” or an “Evidence-Based Finding”
sentence. Alternatively, the goal may be to classify sentences by whether or not they
support a conclusion that a legal factor applies in the case. Thus, a sentencemight be
classified as an instance or not of Factor F1 Disclosure-in-negotiations or F2 Bribe-
employee. Conceivably, the goal of learning could be to predict outcomes for cases,
based on information gleaned from cases texts that relates to litigation participant-
and-behavior features of the judges or attorneys (see Section 12.2) or to the merits of
the claims, such as which legal factors apply (see Section 12.4.2). In the context of
ML from statutory provisions, the goal might be to classify provisions by topic such
as administrative law, private law, environmental law, or criminal law.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 238 — #5

238 Legal Text Analytics

The document vector will include a feature representing the outcome, either a
classification or a prediction. Since learning models frequently can deal only with
numerical features, one needs to encode categorical outcome features like the above
classifications numerically, for instance with binary encoding in multiple features.

In the above sample contexts, the text unit of interest varies. In the e-discovery
context, the unit of interest may be the whole document produced in discovery, or, at
least, the body of the document. In the sentence classification study, the primary unit
of interest is each sentence in, say, a case opinion. In the statutory topic context, the
primary unit may be a provision of the statute. Each level of granularity, documents,
sentences, or provisions can be represented as a feature vector. If the connections of
parts of a document to the whole are important, such as each sentence’s relation to
the particular case opinion in which it appeared, appropriate links can be recorded.

Sets of documents can be represented for processing in a frequency matrix or
document-term matrix. This is like a spreadsheet organized by documents in rows,
and in columns by words or other features such as bigrams or other n-grams, one
column for each such feature appearing in the corpus.

With the text data represented as feature vectors, one can divide the data into
training and test sets. In order to avoid bias, one may randomly sample the vectors
and assign them to the test set with some probability. The remaining vectors become
the training set. An ML algorithm can then train a model on this set and apply it to
make predictions or classifications about the feature vectors in the test set.

In evaluating a model’s performance, especially where the data set is small, one
may employ a cross-validation procedure as described in Section 4.4.3. Each feature
vector in the data set would be used once as a test instance, but it would also be used
to train a model to be applied to other test instances.

One can evaluate a model’s performance quantitatively in terms of a metric such
as accuracy, the ratio of correctly classified vectors in the test set over all of the vectors
in the test set (Section 4.4.4).

A confusion matrix helps to identify the examples that the classifier got right or
wrong. A confusion matrix is a table that contains information about a classifier’s pre-
dicted and actual classifications (Kohavi and Provost, 1998). The table has as many
rows and asmany columns as there are classes. Table 8.1 illustrates a confusionmatrix
for a made-up test set of 690 sentences, each of which is treated as a document. The
model classifies sentences by one of three roles, and each sentence is an instance of
one of the roles. As illustrated in the table, the rows represent the instances that are
actually in a class. The columns represent the instances that are predicted to be in
a class.

One can inspect the confusion matrix to assess the classifier’s performance. The
correctly classified cases lie along the diagonal from the top left to the bottom right
of the confusion matrix. These are the true positives (TPs), that is, where a feature
vector was predicted to be an instance of a class and actually is an instance of the
class (see Section 4.4.4). As shown in the confusion tables below the matrix, one can

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 239 — #6

Machine Learning with Legal Texts 239

table 8.1. Confusion matrix for three classes of sentence roles (top). Three confusion
tables below show total true positives (TPs), true negatives (TNs), false positives (FPs),

and false negatives (FNs) for each class

Predicted class

n= 690 Legal-rule Holding-of-law Finding-of-fact

Actual class Legal-rule 201 96 13
Holding-of-law 46 87 57
Finding-of-fact 23 64 103

TPs for L-r: 201 FNs for L-r: 96+ 13= 109
FPs for L-r: 46+ 23= 69 TNs for L-r: 87+ 57+ 64+ 103= 311
TPs for H-of-l: 87 FNs for H-of-l: 46+ 57= 103
FPs for H-of-l: 96+ 64= 160 TNs for H-of-l: 201+ 23+ 13+ 103= 340
TPs for F-of-f: 103 FNs for F-of-f: 23+ 64= 87
FPs for F-of-f: 13+ 57= 70 TNs for F-of-f: 201+ 96+ 46+ 87= 430

compute the number of true negatives (TNs), feature vectors predicted not to be
instances of a class that actually are not instances of the class. There is one confusion
table for each class.

The confusion tables also indicate the numbers of false positives (FPs), feature
vectors predicted to be instances of a class that are not, and false negatives (FNs),
vectors predicted not to be instances of a class that are (see Section 4.4.4). In order to
understand why themodel mademistakes, one would need to examine the examples
that were false positives or false negatives and investigate which features led to the
erroneous classifications.

8.4. machine learning for e-discovery

e-Discovery is the collecting, exchanging, and analyzing of electronically stored infor-
mation (ESI) in pretrial discovery. Pretrial discovery in lawsuits involves processing
parties’ requests for materials in the hands of opponents and others to reveal facts
and develop evidence for trial. Today, large lawsuits routinely involve millions of
e-documents.

Unlike legal cases or statutes, documents produced in litigation are extremely het-
erogeneous, ranging from corporate memoranda and agreements to email, tweets,
websites, and other Internet-based communications. The challenges in e-discovery
are to extract litigators’ hypotheses (or theories) about what documents are relevant
to the claims and defenses in litigation and to map documents onto these hypotheses
in spite of the documents’ heterogeneity (Ashley and Bridewell, 2010).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 240 — #7

240 Legal Text Analytics

8.4.1. Litigators’ Hypotheses in e-Discovery

Hogan described e-discovery as sensemaking, a “process of collecting, organizing and
creating representations of complex information sets, all centered around some prob-
lem the [sense makers] need to understand” (Bauer et al., 2008). In the course of this
process, litigators construct a theory of relevance or a relevance hypothesis, a more-or-
less abstract description of subject matter that, if found in a document, would make
that document relevant (see Hogan et al., 2010, p. 447).

The formulation of relevance hypotheses varies in terms of the legal and other
concepts relevant to a case, the level of specificity of relevant concepts of interest,
the “variety of ways a concept can be expressed, whether lexically or syntactically,”
and the “use case.” Given a request for production, a party aims not to produce too
much or too little (Hogan et al., 2009, pp. 196–7, 2010, p. 447).

In the context of a lawsuit concerning tobacco advertising aimed atminors, sample
relevance hypotheses might include:

– “All documents which . . .mention any ‘in-store,’ ‘on-counter,’ ‘point of sale,’ or
other retail marketing campaigns for cigarettes.”

– “Are promotional offers relevant?”
– “Is ‘buy one get one free’ by itself sufficient for relevance?” (Hogan et al., 2010,

pp. 446–7).

Litigators’ relevance hypotheses like these are based in part on the formal requests
for documents filed in the case. These relate, in turn, to the complaint that elab-
orates the plaintiff’s legal claims or the defendant’s answer that denies allegations
in the complaint and states defenses. As new facts and information emerge, both
the complaint and defense may be modified with consequent modification of the
hypotheses.

As a result, litigators’ relevance hypotheses may be quite specific, expressed in
terms of who communicated what to whom, when, and, to the extent possible, why.
For example:

– “There are documents showing that the Vice President of Marketing knew that
cigarette advertisements were targeted to children by 1989,” or

– “There exist documents to or from employees of a tobacco company or tobacco
organization in which a tobacco company officer refers to illegal payments to
foreign officials,” or

– “There are documents that are communications between Alice and her lawyer
Bob between 1985 and 1989.” (Ashley and Bridewell, 2010)

More generally, the latter relevance hypotheses are of the form: “There are docu-
ments of a particular kind, satisfying particular time constraints, satisfying particular
social interaction constraints, [and referring] to particular concepts or phrases of
interest” (Ashley and Bridewell, 2010).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 241 — #8

Machine Learning with Legal Texts 241

As described below, when litigators apply ML techniques in e-discovery, they
select documents that are positive or negative instances of what they regard as rele-
vant. Hypotheses like the above may inform litigators’ relevance selections. It does
not appear, however, that the systems provide much, if any, support for litigators to
explicitly formulate such hypotheses nor does it appear that the programs make any
direct use of such hypotheses. In a cognitive computing paradigm, eliciting such
hypotheses explicitly could be useful for guiding testing hypotheses, reformulating
hypotheses and queries, and explaining results. See Section 12.4.1 for a further discus-
sion of the role of hypothesis testing in cognitive computing, albeit against a corpus
of legal cases, not of litigation documents.

8.4.2. Predictive Coding Process

In e-discovery, ML is often referred to as “predictive coding.” Predictive coding in
e-discovery typically proceeds as follows (see Privault et al., 2010; Sklar, 2011).

Using general search tools, a litigator, acting as a case manager (CM), surveys
the corpus of documents produced by the opponent or to be produced by the
litigator’s client. To assist in the survey, the CM may use keyword, Boolean and
concept search, concept grouping and filtering, or identification of near-duplicates
and latest-in-thread emails.

The CM identifies documents that are instances of coding categories (e.g.,
relevant, responsive, privileged, issue-related). For each category, these manually
selected documents become seed sets from which the ML program learns proba-
bilistic predictive models of the category based on features the positive (or negative)
instances share. With the learned model, the program can assign appropriate
categories to previously unseen documents.

Once a category’s seed set contains enough documents, an iterative “training”
process begins:

1. The ML system abstracts from the seed instances a predictive model, a kind
of profile (see Sebastiani, 2002; Privault et al., 2010) using statistical analy-
sis and, possibly, applying shallow parsing, detecting concepts and relations,
expanding with an ontology, or identifying latent semantic features.

2. The system applies the predictive model to the corpus to identify additional
documents and submits some of them to the CM’s team of human reviewers
for confirmation. The suggested documentsmay come from random sampling
or comprise the “examples that the classifier is most unsure about” in a process
called active learning (Oard and Webber, 2013), or they may be “possibly mis-
tagged documents or atypical outliers” (Privault et al., 2010).

3. The CM’s team reviews and categorizes the program-suggested documents to
ensure correctness.

4. The ML system updates its model of the category in light of the relevance
feedback from the human reviewers.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 242 — #9

242 Legal Text Analytics

5. The previous iterative steps are repeated until the unreviewed part of the
corpus contains no more similar documents (Sklar, 2011).

6. Statistical sampling is applied to estimate the level of accuracy and complete-
ness that has been achieved.

Among the ML algorithms that may be applied in generating the model or profile
of a category, a “(supervised) probabilistic latent semantic analysis [may be used
to infer] a generative model of words and documents from topical classes” (Oard
and Webber, 2013, p. 138). In Xerox’s Categorix system (Privault et al., 2010), for
example, the predictive models are based on probabilistic latent semantic analysis
(PLSA). “The basic assumption of PLSA is that there exists a set of hidden (‘latent’ or
‘unobserved’) factors which can underlie the co-occurrences among a set of observed
words and documents.” LSA is a

method for extracting and representing the contextual-usage meaning of words by
statistical computations applied to a large corpus of text . . . The underlying idea is
that the aggregate of all the word contexts in which a given word does and does not
appear provides a set of mutual constraints that largely determines the similarity of
meaning of words and sets of words to each other. (Landauer et al., 1998)

For example, suppose an e-discovery corpus contains documents with sentences
like the following:

– John-Doe, the VP-of-Marketing, resigned yesterday.
– The VP-of-Marketing approved the advertising campaign featuring a cartoon

giraffe smoking a cigarette.
– This cartoon TV series entertains children while helping them discover the

amazing world around them.
– What’s wrong with showing kids a smoking giraffe?

While a program does not “know” who the VP of Marketing is, that cigarettes
are smoked, that a giraffe can be a cartoon, or that children watch cartoons, PLSA
can detect semantic connections among these terms based on the frequency of
occurrence of sentences and documents that relate them. The documents are
represented as term vectors in a vector space with frequency information (see
Section 7.5.2). The term vector representation ignores word order, linguistic analysis,
or ontological information. Thus, the PLSA is the sole basis for assessing document
similarity.

Another kind of ML model applied in e-discovery, a SVM, uses statistical criteria
to find boundaries between positive and negative examples of a category or class in
a multidimensional feature space (see Section 8.3). An example of an SVM is given
in Section 8.5.2.

Given the complex descriptions of such ML algorithms, the reader may not be
surprised to learn that PLSA and SVMs “learn statistical models that are not easily
interpreted or directly tunable by people” (Oard and Webber, 2013, p. 138). Other

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 243 — #10

Machine Learning with Legal Texts 243

classifier designs, such as rule induction and decision trees in Section 4.3.1, can be
interpreted fairly well by humans. For purposes of text classification in e-discovery,
however, “the less explainable statistical text classifiers also tend to be the most
effective” (Oard and Webber, 2013, p. 138).

This can be problematic in e-discovery. The absence of interpretable decision
rules increases the need to rely on empirical evaluation to assess a statistical classi-
fier’s effectiveness, but these evaluation methodologies have limitations, too (Oard
and Webber, 2013, p. 138).

8.4.3. Assessing Predictive Coding Effectiveness

From the viewpoint of a trial judge and the litigators, evaluating the effectiveness
of a machine-learned classifier is a key concern. Although it would be convenient
to have the full set of relevant documents in order to assess a classifier’s retrieval
effectiveness, often it is not feasible manually to assess the entire collection. That is
exactly the problem of e-discovery; as a general rule, the collection is too large (Oard
and Webber, 2013, pp. 159–60).

Even if human assessment of the completeness of document productions was
possible, it is not necessarily dependable. Consider the defendants’ lawyers in the
Blair and Maron’s study of the previous chapter who estimated that they had found
75% of the relevant documents in their client’s collection. Based on a “sample of
documents . . . from the unretrieved segment of the collection, and assessed for rele-
vance by the same lawyers,” their true recall was estimated at only around 20% (Oard
and Webber, 2013, pp. 160).

Instead of human assessment, random sampling, statistical estimation, confidence
levels, and confidence intervals are employed to estimate recall. Let’s illustrate this
in the context of the tobacco litigation e-discovery examples above. The following
example has been adapted from Tredennick (2014a).

Let’s assume that 1 million documents were produced for review. Neither party
knows in advance how many of those documents are relevant, but let’s suppose that
one side’s litigator believes it most likely that about 10,000 documents or 1% are
relevant. That is his point estimate, the most likely value for a characteristic of the
document population (Grossman and Cormack, 2014).

Since the point estimate is not certain, the litigator decides to make a statistical
estimate. That is, he will draw a statistical sample, determine the proportion of the
documents in the sample that are relevant, and apply that ratio to the whole collec-
tion. A statistical sample is one in which some number of documents are drawn at
random from the collection. The random selection helps to ensure that the sample
is representative of the entire document set so that the resulting relevance ratio can
be extrapolated to the whole (Grossman and Cormack, 2014).

The size of the sample required depends on the litigator’s desired confidence level.
The confidence level is the chance that a confidence interval derived from a random

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 244 — #11

244 Legal Text Analytics

sample will include the true percentage of documents that are relevant. Conversely,
the confidence interval is a range of values estimated to contain the true value with
the desired confidence level (Grossman and Cormack, 2014).

Let’s assume the litigator’s point estimate is that 1% of the documents are rele-
vant, plus or minus 2%, with a target confidence level of 95%. The 95% confidence
means that

if one were to draw 100 independent Random Samples of the same size, and com-
pute the Confidence Interval from each Sample, about 95 of the 100 Confidence
Intervals would contain the true value . . . it is the Probability that the method of
estimation will yield a Confidence Interval that contains the true value. (Grossman
and Cormack, 2014)

In the context of discussion of search protocols in litigation, 95% ± 2% is a “widely
cited . . . estimation goal ” (Oard and Webber, 2013, pp. 161).2

According to the commonly used statistical method of estimation (called
Gaussian), confidence intervals are calculated based on the assumption that the
quantities to be measured follow a normal bell curve distribution (Grossman and
Cormack, 2014).

The margin of error is the maximum amount by which the point estimate may
likely deviate from the true value. It is frequently expressed as “plus or minus” a
percentage, with a particular confidence level. In this example, the litigator’s expres-
sion means that his point estimate is 1%, his desired margin of error is 2%, and the
confidence level is 95%. With Gaussian estimation, the confidence interval is twice
the margin of error. Here because of the floor (there cannot be negative numbers of
relevant documents), the interval is 0% to 3%. In this example, with 1 million docu-
ments, the litigator’s statistical estimate may be restated as “10,000 documents in the
population are relevant, plus or minus 20,000 documents, with 95% confidence” or
“between 0 and 30,000 documents are relevant, with 95% confidence.”

With a 2% margin of error and 95% confidence level, one can calculate the
required sample size as 2,396 documents.3 The litigator draws them at random from
the document set and, after reviewing them, finds that, say, 24 of the documents are
relevant. Given this new information, an exact measure of the confidence interval
can be calculated using a binomial confidence interval calculator.4 Expressed as
a decimal, the confidence interval can now be computed as ranging from 0.0064
(lower) to 0.0149 (upper). Multiplying these decimal values against the total number
of documents in the whole set, 1 million, the litigator calculates that his exact confi-
dence interval ranges from 6,400 to 14,900. In other words, the number of relevant
documents in the set could be as high as 14,900 or as low as 6,400.
2 This way of expressing an estimation effectiveness target does not specify what values for recall and

elusion are acceptable. The goal states only the statistical precision with which the prevalence of
relevant documents shall be measured (see Oard and Webber, 2013, pp. 161).

3 See the sample size calculator at www.raosoft.com/samplesize.html
4 See the binomial confidence interval calculator at http://statpages.info/confint.html

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 245 — #12

Machine Learning with Legal Texts 245

The litigator’s review team gets to work, searches 50,000 documents (5% of the
collection) with predictive coding, and finds, say, 7,500 relevant ones.

The question is what recall has the review team achieved? If the point estimate
of 10,000 relevant documents were correct, the recall would be 75% (7,500/10,000).
In practical terms, given the high cost of document discovery and the diminishing
return on investment of further expensive search efforts, that may be regarded as a
defensible recall value. On the other hand, if 14,900 documents were relevant, the
upper range for the confidence interval, the recall is only 50% (7,500/14,900), which
is considerably less likely to be accepted as satisfying a party’s discovery obligation.

In an effort to obtain more accurate information about recall, the attorney could
sample the unreviewed 950,000 documents to see what proportion of them are rele-
vant. In other words, he could estimate the elusion. Using the same 95% confidence
level and a 2% margin of error, let’s assume that the litigator again reviews 2,396
documents randomly selected this time from the unreviewed documents.

Suppose that the review team finds eight relevant documents. The ratio of relevant
documents in the sample of unreviewed documents is 0.33% (8/2,396) and suggests
that there are 3,172 relevant documents in the unreviewed set (950,000× (8/2,396)).
Again calculating the exact binomial confidence interval yields 0.0014 to 0.0066.
Applying this exact confidence interval range to the unreviewed documents, the low
range is 1,330 (0.0014× 950,000) and the high range is 6,270 (0.0066× 950,000).

Based on this additional information, the attorney could recompute the recall his
team achieved. The team found 7,508 relevant documents out of what could be a
total number of relevant documents ranging as high as 13,770 (7,500+ 6,270). The
recall would then be 55% (7,508/13,770), still probably not high enough to justify not
continuing to search.

At this point, one could attempt to narrow the margin of error still further to 1%.
In that case, the attorney would need to sample 9,508 documents from the unre-
trieved set. If the sample did not confirm the litigator’s initial estimate of 75% recall,
the review would need to continue and another sampling from the unretrieved set
would be required (Tredennick, 2014a). Alternatively, the litigator could employ a
direct method for measuring recall that involves picking documents at random until
a required number of relevant documents are selected (384 for a 95% confidence
level) and then computing the recall. If only 1% of the documents are relevant,
however, that couldmean reviewing another 38,400 documents (Tredennick, 2014b).

The point of this example has been to illustrate the nature of statistically estimat-
ing recall and elusion in e-discovery. It also suggests the difficulty and expense of
demonstrating that an adequate level of recall has been achieved. In addition, there
are theoretical issues concerning sampling to statistically estimate recall (see Oard
and Webber, 2013, p. 162) as well as pragmatic ones. For instance, as noted, one
can compute a required sample size for a statistical estimate. If there is a possibility,
however, that one might find important “smoking gun” documents in a high-stakes
litigation or that someone has rigged the distribution of documents in the collection

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 246 — #13

246 Legal Text Analytics

to hide telling evidence, a larger sample size may be required than that predicted by
the statistical formula (Sohn, 2013).

8.4.4. Other Open Issues in Predictive Coding

The e-discovery community is grappling with a number of other open issues
concerning predictive coding.

In supervised learning (Section 4.3), seed sets play a vital role: their documents
represent a relevant category and reflect a litigation expert’s determinations. A still
open question, however, is where best to start in constructing a seed set. Should one
begin with:

– instances of specific concepts as selected by a subject matter expert?
– manually formulated queries identifying criteria that a relevant document must

satisfy and iteratively adjusting the query as new documents are examined?
(Oard and Webber, 2013, p. 137)

– a completely randomized sample regardless of specific fact issues? (Oard and
Webber, 2013, p. 137)

– document clustering, that is, automatically constructed groupings of docu-
ments based on shared features? (Privault et al., 2010)

– a hybrid of the above?

According to Remus and Levy (2015, p. 17), supervising attorneys should employ
keyword searches to select the initial seed set of documents and then rank them for
relevance. The question of which method of generating seed sets is best, however,
may depend on the detailed nature of the search and of the corpus.

A second issue deals with how best to represent texts in e-discovery. Researchers
are exploring more knowledge-based techniques and enriched text representations
beyond the ML staple, BOW (see Section 7.5.2). “It remains to be seen what use can
be made in automated review of entity extraction, document metadata, social net-
work analysis, the structure and patterns of email communication, the temporal and
organizational locality of responsive information, and so forth” (Oard and Webber,
2013, p. 212).

For instance, previous studies have applied social network analysis to interpreting
email in e-discovery (Henseler, 2010). This kind of analysis involves graphically repre-
senting the interactions and relations among people, groups, organizations, websites
and other information-processing entities, measuring properties of these graphs, and
drawing inferences from the measurements. Document senders, receivers, and own-
ers identify themselves in email records and contents. Representing and analyzing
who is communicating with whom about what topics and over what time frames can
provide valuable information for selecting relevant texts for further analysis.

The complexity of predictive coding raises still other practical issues. Predic-
tive coding in e-discovery affects litigation strategy (Sohn, 2013). At the time when

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 247 — #14

Machine Learning with Legal Texts 247

keyword searches were themain e-discovery technique, counsel negotiated the terms
and queries that would be used to search for documents. The query negotiations
helped the parties to agree on the scope of discoverable evidence. Predictive coding,
however, applies ML algorithms to text representations that involve more than just
terms. Assessing the effectiveness of a search raises complex questions about mea-
suring recall and elusion and about what levels of recall and elusion are sufficient
given the costs of searching. This introduces uncertainties, may lead to disputes, and
makes negotiations more complex. In addition, despite the complexities of the pre-
dictive coding process, parties need to maintain a complete audit trail documenting
steps taken in order to defend one’s predictive process in discovery-related hearings
(Sohn, 2013).

Despite these theoretical and practical issues, evidence suggests that technology-
assisted review is working; predictive coding and other techniques are supporting
human/computer interaction in identifying documents that are relevant to produc-
tion requests (see Grossman and Cormack, 2010). For example, in the TREC Legal
Track series of annual contests, competing e-discovery technologists applied their
methods to the same tasks and corpora. For TREC challenges from 2008 through
2011, “Every system that simultaneously achieved high precision and high recall,
relative to the other participating systems, relied on . . . technology-assisted review”
(Oard andWebber, 2013, p. 199). Evidence supports the conclusion “that technology-
assisted production can be at least as effective as manual review, if not more so, and
at a fraction of the cost” (Oard and Webber, 2013, p. 203).

8.4.5. Unsupervised Machine Learning from Text

Before leaving the topic of e-discovery, it is worth focusing briefly on unsupervised
ML from text.

Predictive coding in e-discovery and theML to predict case outcomes inChapter 4
are all examples of supervised learning. That is, they illustrate “techniques used to
learn the relationship between independent attributes and a designated dependent
attribute (the label)” (Kohavi and Provost, 1998).

Unsupervised learning employs ML algorithms that infer categories of similar doc-
uments but without a human expert’s preparing a training set of manually labeled
examples (see Grossman and Cormack, 2014). Document clustering algorithms, for
instance, do not use labeled training data. They group instances together without
any preexisting information about what labels are correct (see Kohavi and Provost,
1998). Instead, they infer groups of documents based on their content or metadata
and leave for humans the task of determining post hoc what the members of the
group share and what labels to apply, if any (see Privault et al., 2010, p. 464; Oard
and Webber, 2013, p. 139).

As noted, clustering techniquesmay play a role in selecting seed sets for supervised
learning techniques. For example, Categorix is a system that uses unsupervised ML

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 248 — #15

248 Legal Text Analytics

to group documents into clusters, which may then suggest to humans the labels that
should be applied, whereupon supervised learning commences. In the unsupervised
mode, the user specifies the desired number of clusters in advance but provides no
information to the system as to specific categories or labels.

The system employs PLSA (see Section 8.4.2) as a similarity measure. It parti-
tions the documents into the specified number of clusters, grouping together the
documents most similar to each other (Privault et al., 2010). The system graphically
displays the clusters to human experts who try to discern commonalities and assign
appropriate labels. The display provides a “virtual magnet” feature that organizes
documents around a “magnet” button by distances representing a document’s level
of similarity to a cluster of interest. Documents most similar are placed closest to the
magnet button and are highlighted in red; less similar documents lie farther out and
have different colors.

Once the human experts assign the labels, the system shifts to supervised learning
in order to assist humans in classifying new documents according to the labels. This
sequencing of unsupervised and then supervised learning helps review teams deal
with the fact that document production in e-discovery frequently occurs incremen-
tally, with new collections of documents being produced over time (Privault et al.,
2010, p. 464).

8.5. applying ml to legal case texts in the history project

e-Discovery and predictive coding apply ML to heterogeneous texts. Since the texts
are involved in litigation, they are “legal” texts in a sense, but they are not the staple
texts of traditional legal research: court decisions, statutes and regulations, etc. How
can ML be applied to these relatively homogeneous legal texts and what kinds of
useful information can ML learn to extract? The various corpora of CLIR services
like LexisNexis and Westlaw could be extensive resources for mining conceptual
legal information.

The Westlaw History Project is a prototypical example of applying ML to a legal
IR corpus (Al-Kofahi et al., 2001; Jackson et al., 2003). The system addressed the “his-
tory task,” that is, identifying language in court opinions that affects previous cases
and linking them accordingly. In particular, it addressed the Prior Cases Retrieval
(PCR) problem: identifying cases that are within the appellate chain of the cur-
rent or “instant” case. In a hierarchical court system, litigation commenced in a
trial court may spawn decisions on motions that appear in subsequent separate opin-
ions. The motion decisions and the trial court’s “final” decision may be appealed up
through the chain of appellate divisions of the same court and of higher appellate
courts. Thus, a prior opinion can be from a lower court or even from the same court
(Al-Kofahi et al., 2001, p. 88).

Westlaw maintains a citator database that contains known appellate chains for
the 1.3 million cases of 7 million cases in the database that have appellate chains.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 249 — #16

Machine Learning with Legal Texts 249

The History Project aimed at assisting in maintaining and augmenting the citatory
database. Frequently, however, case opinions do not adequately identify prior cases.
For instance, when the instant case opinion was written, a prior case may not yet
have been published. Since the plan was to have Westlaw’s human editors check
the outputs of the system, the task application required especially high recall close
to 100% and precision greater than 50% so as to avoid making too many suggestions
(Jackson et al., 2003, p. 274).

8.5.1. History Project System Architecture

The History Project system combines IE from a text corpus, information retrieval of
candidate cases based on the extracted information, and decision-making about the
candidates based on ML (Al-Kofahi et al., 2001; Jackson et al., 2003). As shown in
Figure 8.1, the system architecture of the History Project comprised three parts: info
extraction, info retrieval, and decision-making.

In the preprocessing step in Figure 8.1, the cases in the citator database were
indexed by features of their titles. Each party entity in the title gave rise to an indexing
term. For instance, “the entity representing ‘David E. Smith’ generates the indexing
terms ‘Smith’ and ‘David+Smith’ ” (Al-Kofahi et al., 2001, p. 89). For each term, the
number of titles in which a term appears was computed; this is the term’s document
frequency. The lower a term’s frequency, the more discriminating the term is when

figure 8.1. History Project system architecture (see Al-Kofahi et al., 2001)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 250 — #17

250 Legal Text Analytics

it appears in a case. Each of the 7 million cases was then indexed by the up-to-eight
most discriminating terms.

Given a new case, one can use the citator database to retrieve candidate cases that
may be prior cases in the instant case’s history. This process begins in the first stage
marked 1. Info extraction in Figure 8.1. Given an instant case, an IE system processed
the opinion and its header, pulling history language, party names, courts, dates, and
docket numbers. The current case’s title is processed to extract the indexing terms
(as above). Then, in the information retrieval stage (Figure 8.1, 2. Info retrieval) given
the extracted information, a retrieval system submitted queries to the citator database
to retrieve candidate cases that might be part of the instant case’s prior history. The
most discriminating index terms are combined with information about the case’s
date and court information, such as jurisdiction, agency, locality, and circuit of the
court, to retrieve from the citator database prior case candidates that fit the possible
appellate chains for the instant court and that were decided within the past seven
years of the instant case’s date (Al-Kofahi et al., 2001, p. 90). The party information is
extracted from each of the candidate cases, compared with that of the instant case,
and a listing of the candidate cases, ranked by similarity of the parties, is returned.

In step 3. Decision-making (Figure 8.1), a system applies ML to decide which of
the retrieved candidates are prior cases of the instant case.

As always, an initial question was how best to represent each case for purposes
of ML. Here, each candidate case was represented as feature vector in terms of
eight features that appeared to be relevant indications of a true, prior case (see Sec-
tion 8.3). Thus, the end points associated with each candidate case feature vector are
distributed across an eight-dimensional feature space. The eight features comprised:

Title Similarity: a measure of how similar the title of the instant case and that of a
candidate prior case are.

History Language: a binary feature indicating if direct history language was
extracted from instant case. This alone yields recall in the low 80s; precision
in the 50–60% range.

Docket Match: a binary feature indicating if the instant–prior case pair has been
assigned the same docket number (which is often not the case).

Check Appeal: given the instant court, an estimate of the probability, it is a
successor to the prior court.

Prior Probability: an estimate of the probability that the instant case has a prior
case. This is based on the ratio of cases with priors to the total number of cases
in the database.

Cited Case: a binary feature indicating if the prior case candidate was cited in the
instant case.

Title Weight: the estimated weight of information in the instant case title. For
example, “Smith” is less informative than “Alex J. Tyrrell.”

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 251 — #18

Machine Learning with Legal Texts 251

AP1 Search: a binary feature indicating if a prior case candidate was retrieved via
an appeal line query in the instant case. This is a special line in the instant case’s
text, which may contain information about the prior case.

The problem, however, is determining which features are more important. The
researchers did not know the features’ relative importance a priori, but a ML pro-
gram could learn those weights on a training set and make predictions on case texts
it has not yet seen. The History Project team employed supervised learning (see
Section 4.3) for this task using a SVM as the ML algorithm. SVMs are described
next in greater detail.

8.5.2. ML Algorithms: Support Vector Machines

An SVM uses statistical criteria to discriminate between positive and negative exam-
ples of a category or class. As noted above in the discussion of predictive coding
(Section 8.4.2), a statistical ML algorithm may perform more effectively than, say,
a decision tree program, but, unlike a decision tree classifier, which humans can
interpret intuitively, an SVM’s model is not as intelligible.

An SVM identifies a boundary in a vector space between the positive and negative
instances of a category or class that is maximally distant from all of the instances
(Noble, 2006). Ideally, all of the candidate cases that are positive instances lie on
one side of the boundary and all of the negative instances lie on the other.

The boundary is a geometrical entity, the nature of which depends on the dimen-
sionality of the vector space. If the vector space were a line, such a boundary would
be a point; if the space were a plane, it would be a line. In a three-dimensional vector
space the boundary would be a plane, and in a higher dimensional space (includ-
ing an eight-dimensional space as in the History Project) the boundary is called a
“hyperplane.” Based on the hyperplane the SVM learned, predicting the label of
a previously unseen case is simply a matter of determining on which side of the
boundary the new case’s vector falls (see Noble, 2006, p. 1565).

Figure 8.2(1) illustrates a hyperplane separating positive and negative instances,
which can be used to classify the unknown instance (white dot). Graph (2) illustrates
a number of alternative hyperplanes that could separate the positive and negative
instances, but an SVM algorithm picks the one shown in (3) that maximizes the
margin between the boundary and all of the instances (Noble, 2006, p. 1566).

Since real data often cannot be separated cleanly using a straight line, an SVM
algorithm can have a parameter that enables the hyperplane boundary to set a soft
margin. The parameter determines a trade-off among the number of examples that
are permitted to violate the boundary (these are the data instances that cannot be
classified correctly), how much they may extend over the boundary, and the width of
the margin between the boundary and positive and negative instances (Noble, 2006,
p. 1566). Figure 8.2(4) illustrates a hyperplane boundary with a soft margin setup

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 252 — #19

252 Legal Text Analytics

figure 8.2. SVM examples. Black dots are positive instances, gray dots are negative,
and the white dot is “unknown” (see Noble, 2006, p. 1566)

by the SVM algorithm despite the erroneously classified instance indicated by the
arrow.

Sometimes, a boundary cannot be drawn in n-dimensions to separate the positive
and negative instances. SVM algorithms can support “kernel functions” that enable
the SVM to classify in n+ 1 dimensions, a set of data originally in n dimensions.
In other words, “a kernel function projects data from a low-dimensional space to
a space of higher dimension” (Noble, 2006, pp. 1566–7). Figure 8.2(5) illustrates
a one-dimensional data set that cannot be separated by one boundary point into
positive and negative instances. On the other hand, (6) shows how the formerly non-
separable data can be separated by a boundary in two dimensions. The change in
location in the diagram “symbolizes” the projection into a different hyperplane by
the kernel function. Selection of the right kernel function can facilitate determining
such a boundary.

8.5.3. History Project SVM

As noted, the History Project SVM ranks prior case candidates according to the
likelihood of their being truly part of the instant case history.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 253 — #20

Machine Learning with Legal Texts 253

The researchers trained the SVM with 2,100 cases selected randomly from the
database. Each of these instant cases was processed using the modules in Figure 8.1,
parts 1. Info extraction and 2. Info retrieval, to retrieve candidate prior cases from
the citator database. For each instant case, up to 100 prior case candidates were
accumulated, the 100 prior cases with the highest title similarities.

Each prior case candidate was then represented in terms of an eight-dimensional
feature vector, resulting in 113,000 training vectors. Crucially for supervised ML, the
research team knew in advance from the citator whether each candidate was, in fact,
a prior case of a given instant case (Jackson et al., 2003, p. 284). In other words, it was
known whether the training case is a positive or negative instance of a prior case.

After training themodel, the SVMwas evaluated with a test set of 312 cases that had
been chosen at random by the editorial staff. Of these, 123 cases turned out actually
to have prior cases in the citator database.

As noted, an SVM is normally used to classify the unseen cases: it assigns posi-
tive or negative scores to each test case indicating on which side of the boundary it
appears. The History Project team, however, employed the SVM for a related but
different task. It reranked the prior case candidates of an instant case, based upon
the distance from the learned boundary (Jackson et al., 2003, p. 285). The ranked
list and corresponding distance scores were then inputted into a decision module
designed to improve the system’s recall.

The resulting recall was 99.2% (i.e., 122/123) and precision was 64.9% (i.e., 122/188).
The average number of suggestions reported per instant case was five. That is the
number of suggestions a human expert would have to consider in order to verify the
system’s performance.

8.6. machine learning of case structures

The Westlaw History Project is a paradigm example of applying ML to extract use-
ful information from a corpus of legal cases. Although the information extracted
was prior case history, in principle similar techniques can extract other kinds of
information from cases that can improve legal information retrieval performance.

One such useful kind of information concerns the structure of the legal docu-
ments in the corpus. It provides clues to the meaning of their contents. For example,
ML can be used to distinguish factual from legal discussions in cases based on evi-
dence in the text. If a sentence is located in a part of the opinion where the court is
discussing facts, it is likely that the sentence expresses some facts of the case.

LexisNexis, for instance, has patented a technique for generating training data for
use with such ML algorithms. The algorithms learn to recognize whether a passage
of a legal case contains fact, discussion, neither fact nor discussion, or both fact and
discussion (Morelock et al., 2004). The method partitions texts in the documents by
headings, annotates the relative location of the passage in the opinion, compares the

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 254 — #21

254 Legal Text Analytics

document headings to lists of fact headings and discussion headings, and assembles
training sets of the associated texts.

For purposes of the algorithm’s learning to recognize and distinguish fact and
discussion paragraphs, the passages are represented in terms of features including:

– Relative paragraph position, for example, the kth paragraph of total of n
paragraphs in an opinion;

– Number of citations to cases or to statutes;
– Number of past-tense verbs, such as “dated,” “requested,” “served,” “applied,”

“granted,” “executed,” and “filed”;
– Number of dates, such as “Dec. 15, 1975” and “June 21, 1976”;
– Number of signal words, for example, “conclude,” “find,” “hold,” “reverse”;
– Number of references to “this court” or to a lower court, such as “lower court,”

“the trial court,” and “the trial judge”;
– Number of words relating to parties, for example, “plaintiff,” “appellant,”

“claimant,” “defendants,” and “respondents”;
– Number of legal phrases employed, such as “criminal history,” “custody dis-

pute,” or “eminent domain.”

Each training instance is parsed into chunks, compared with feature values of
at least five of the above features, and the relative location of the passage and the
matched features are used to represent the passage for purposes of ML.

As with the History Project, the features are intuitively useful, but their weights are
unknown. That is where ML again comes into play, to learn the weights of features
in classifying the training set. A classifier informed by these weights can then predict
whether unknown passages contain facts, discussion, neither, or both. The patent
refers to applying two ML algorithms to learn the feature weights, naïve Bayes or
logistical regression, discussed in Section 10.3.3.

8.7. applying ml to statutory texts

ML can also be applied to statutory texts. A recent project applied an interactive
tool for predictive coding to the task of finding relevant provisions for the purpose of
statutory analysis.

8.7.1. Statutory Analysis

Statutory analysis is the process of determining if a statute applies, how it applies,
and the effect of its application (Putman, 2008, p. 61).

Before one can perform statutory analysis, one must find candidate relevant pro-
visions to analyze. This step is well-supported by current legal IR Systems. Given a
legal issue, an attorney hypothesizes that certain kinds of statutes (or specific pro-
visions) are legally relevant to the issue and creates a search query for a legal IR

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 255 — #22

Machine Learning with Legal Texts 255

system. For example, if the legal issue is “What do Pennsylvania (PA) statutes require
of public health system institutions concerning preparedness for and response to
public health emergencies?,” an attorney might hypothesize that:

A relevant statutory provision will direct some institution of interest such as a fire
department, hospital, or health department, etc. to prepare for or respond to some
emergency, disaster, or hazard.

The user may then formulate a query like the following:

(emergency OR disaster OR hazard) AND

(respond OR prepare) AND

(OR fire OR hospital OR medical OR “Emergency Management Agency” OR
“community health” OR “department of health” OR “environmental protec-
tion” OR . . . for each type of institution of interest)

From the IR system’s results, the attorney can pick the most promising candidate
provisions.

IR systems, however, do not provide much support for determining which are the
most promising candidates or for refining the hypothesis and query to capture more
features that distinguish relevance. If one wanted to ensure regulatory compliance
by a hospital or, in some other example, to explore the legal landscape for a business
entering a new state jurisdiction such as Pennsylvania, these subsequent steps in
statutory analysis are important.

8.7.2. An Interactive ML Tool for Statutory Analysis

For this task, some researchers have developed an iterative ML process, like predic-
tive coding in e-discovery, but dealing with statutory texts (Savelka et al., 2015). After
the provisions retrieved by the legal IR search are inputted into the interactive tool, it
presents a number of candidate provisions to the user. The user provides feedback to
the ML classifier, identifying positive and negative examples of the kind of statutes
he or she seeks. The classifier then updates its model accordingly and the process
repeats.

In this way, the relevance assessment is a kind of dialogue between the human
expert and the ML statutory classification model. Users employ the tool’s interactive
graphical user interface (GUI), illustrated in Figure 8.3, to flag statutory provisions as
relevant to the issue. The tool shows the user (a) an unprocessed statutory provision,
(b) the features/terms deemed important in the current model and their weights,
(c) summary statistics showing the distribution of relevant and nonrelevant provi-
sions up to that point, and (d) a list of the labeled provisions with confidence scores.
It also suggests the label for the unprocessed provision and indicates its confidence
level, highlights the prominent features in the current provision at (a) and (b) in the
figure, solicits the user’s decision (top right), and records the user’s response. Users

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 256 — #23

256 Legal Text Analytics

figure 8.3. Statutory analysis tool (Savelka et al., 2015)

can also suggest features that could be important by highlighting a term and clicking
a respective button at (a) (Savelka et al., 2015).

Upon a user’s request, the classification model is retrained, learning new features
and weights for each of the newly user-classified provisions. The tool employs a
SVM with a linear kernel as the ML classification algorithm. SVMs are explained
in Section 8.5.2.

An interesting question is whether a ML model trained on legal texts in one
jurisdiction can classify similar texts from a different jurisdiction. The researchers
evaluated their interactive ML approach and addressed this question in two experi-
ments. In the first, a “cold-start” experiment, they evaluated the tool’s performance
on a set of Kansas statutory provisions. They compared the results of classification
with the tool against two baselines involving manual assessments by expert public
health system annotators. In the second, a “knowledge reuse” experiment, they eval-
uated the tool’s performance for a similar statutory analysis involving provisions from
Alaska but where the tool began by reusing the ML classifier learned on the Kansas
provisions (Savelka et al., 2015).

The ML classifier’s performance was evaluated in terms of precision, recall, the
F1 measure (Section 7.6), and two other measures, receiver operating characteristic
(ROC) and area under the ROC curve (AUC), commonmetrics for evaluating binary
classifiers.

An ROC curve plots the true positive rate on the y-axis against the false positive
rate on the x-axis for a set of different possible decision cutoffs or thresholds. The
true positive rate corresponds to recall; it is the proportion of relevant documents

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 257 — #24

Machine Learning with Legal Texts 257

that are correctly identified as such (TP/(TP+ FN)) (see Section 7.6). The false
positive rate is the proportion of nonrelevant documents that are incorrectly iden-
tified as relevant (FP/(FP+ TN)). A cutoff is a threshold score on a ranked list of
documents produced by, say, an ML algorithm, above which a document is deemed
to be relevant and belowwhich a document is deemed to be irrelevant. Typically, the
higher a cutoff the higher the precision and lower the recall. Conversely, the lower
the cutoff, the lower the precision and higher the recall (Grossman and Cormack,
2014).

The AUC represents the probability that a classifier will rank a randomly chosen
positive data point higher than a randomly chosen negative one. In the context of
the statutory analysis tool, the randomly chosen positive and negative data points
correspond, respectively, to relevant and nonrelevant provisions. Thus, AUC is the
probability that a randomly chosen relevant document is assigned a higher priority
than a randomly chosen nonrelevant document. An AUC score of 100% is perfect;
all relevant documents have been ranked higher than all nonrelevant ones. An AUC
score of 50% indicates that it is no better than chance that a relevant document will
be ranked higher than a nonrelevant one (Grossman and Cormack, 2014; Savelka
et al., 2015).

The two baselines include a precision-focused baseline of a human classifier, who
assumed that all of the still unprocessed documents are not relevant, and a recall-
focused baseline of a human classifier, who assumed that all of the still unprocessed
documents are relevant.

The interactive ML approach outperformed the baselines in both experiments,
achieving good, if not excellent, classification performance. In the cold-start exper-
iment, after labeling about 25 documents, the classifier’s AUC score was above 80%
(Savelka et al., 2015). Moreover, the second experiment demonstrated an interesting
transfer effect. Reusing the classification model based on one state’s documents gave
the tool an objectively measurable advantage in classifying a new state’s provisions
for a similar statutory analysis. In other words, the knowledge learned from analyzing
one state’s statutes helped in analyzing the other’s (Savelka et al., 2015).

8.8. toward cognitive computing legal apps

In order to solve legal problems, humans need to find documents in corpora con-
taining materials produced in e-discovery, cases, or statutes and regulations. This
chapter has demonstrated applying ML in each of these contexts in order to improve
information retrieval.

In each context, a user probably has in mind a hypothesis about the kinds of doc-
uments that would be relevant to solving the problem. IR systems assist the user in
expressing the hypothesis in terms of keyword searches or natural language queries,
but such queries tend to retrieve only a first cut of documents that may be relevant.
Beyond ranking documents and highlighting terms, the systems leave to the user the

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C08” — 2017/5/27 — 11:46 — page 258 — #25

258 Legal Text Analytics

task of reading the documents, deciding which of them really is relevant, and refin-
ing the hypothesis in light of what the user finds. In e-discovery, the queries return
too many documents to read. In the case of statutory provisions, determining which
ones, in fact, relate to the statutory analysis is still a manual task.

The statutory analysis tool in the previous section and its interactive ML approach
suggest how a CCLA might look. Predictive coding helps users, in effect, to specify
what they are really looking for. The incremental interaction of the system’s pre-
senting examples and the user’s flagging them as relevant or not operationalizes and
refines the user’s hypothesis. In the sense of cognitive computing, each is performing
the kind of intelligent activity it does best; the human user exercises judgment about
what is relevant and the system learns a model that embodies those judgments in a
way it can apply to new documents. We have seen this approach in e-discovery and
in support of statutory analysis.

Beyond flagging documents, however, a human can explain why something is
relevant or not. Even before a system retrieves examples, a human can explain what
would be relevant. This might be thought of as the human’s explicit hypothesis about
relevance and prediction about the useful materials that might be found in the cor-
pus. In addition, the human can revise his or her relevance hypothesis in light of the
examples the system produces.

Ideally the system could understand the human user’s relevance hypotheses and
operationalize them in retrieving documents. Given text analytic tools, this can be
achieved to some extent. Section 12.4.1 describes a prototype for CCLAs that could
support humans in formulating useful hypotheses explicitly that the app could test
against legal texts in a corpus and that the human could modify in light of the
examples produced.

In order to lay the groundwork for that, however, we need to learn more specifi-
cally how ML can extract useful information from legal texts. Chapter 9 addresses
applying ML and related techniques to extract information from statutory and reg-
ulatory texts. Chapter 10 addresses applying the UIMA-related text processing tools
and ML to extract argument-related information from the texts of case decisions.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.008
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:23:17, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.008
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 259 — #1

9

Extracting Information from Statutory and
Regulatory Texts

9.1. introduction

Attorneys, citizens, business personnel, and policy-makers all need to access and
understand regulatory texts in order to discover what the legal rules are and how
to avoid violating their requirements. Thus, AI & Law has long aimed at automati-
cally extracting information about the rules’ requirements from electronically stored
statutory and regulatory texts.

This chapter presents some ML and KE techniques for extracting information
from statutory texts, including regulatory topics and concepts, types of norms or rules,
and some functional elements of statutory provisions.We examine the relativemerits
of using ML and rule-based approaches to automatically classify statutory provisions
and extract functional information from them.

The chapter then focuses on the more ambitious goal of extracting logical rules
from statutes and regulations. Ideally, one could extract business rules from statutes
automatically. The extracted rules could be applied deductively as in Section 2.3.4
or as defeasible rules in process compliance as in Section 2.5.3. Engineering design
environments might, for example, help ensure that systems are designed to be com-
pliant with rules extracted from regulations that have been formalized and integrated
into the design process. That would extend even farther an approach to compliant
design like the one in Section 2.5.5. Alternatively, defeasible rules, extracted from
statutory texts, might be used in legal arguments as in Section 5.3.1. A QA system
might use the extracted rules to answer questions about their requirements in legally
sophisticated ways as suggested in Section 5.9. Unfortunately, however, the results of
efforts to extract rules from regulatory texts fall far short of the ideal for automating
reasoning in these ways.

Even without automating reasoning with extracted statutory rules, however, tech-
niques for extracting information automatically from statutory texts can support

259
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 260 — #2

260 Legal Text Analytics

cognitive computing in a variety of other ways. Automatic extraction facilitates con-
ceptual information retrieval from corpora of statutory texts. Annotating provisions
automatically in terms of semantic concepts drawn from a legal ontology such as
the e-Court or Dalos ontologies of Sections 6.3.1 and 6.4 enables users to retrieve
documents based on their conceptual content. A program could also automati-
cally generate abstracts or summaries of statutory provisions in terms of the relevant
concepts.

A program can even generate network analyses of systems of regulations as in Sec-
tion 2.6. A statutory network can visually represent extracted information that certain
provisions direct certain agents to take actions with respect to certain other agents.
One such project applies ML to multi-state statutory texts, enabling the construction
of statutory networks with which human analysts can compare aspects of different
states’ similarly purposed regulatory systems either visually or quantitatively. The net-
works also provide a GUI for retrieving relevant provisions from a statutory database.
Applying a LUIMA type system and text annotation pipeline to process the texts may
improve their representation for purposes of more effective ML.

The chapter addresses a number of questions, including: How does IE from statu-
tory texts work? What roles do ML, NLP, and KE play? Can programs extract logical
rules directly from regulatory texts? What is regulatory compliance? How can statu-
tory network diagrams improve conceptual legal information retrieval or facilitate
statutory analysis? Can a UIMA-like type-system-based text analysis pipeline assist in
processing statutory texts?

9.2. research overview regarding extracting information
from statutory texts

Research on extracting information from statutory provisions has focused on extract-
ing, or classifying provisions in terms of, the following types of information:

– Functional types of statutory provisions or norms such as definition, prohibi-
tion, obligation, and permission.

– Function-related features including elements of or arguments to functional
types, such as bearer of a duty or acting agent, action, and receiving agent.

– Areas or topics of law such as administrative law, private law, environmental law,
or criminal law.

– Semantic profiles that combine functional types, functional features, or topic
areas.

– Regulatory concepts useful for indexing provisions, such as appear in a legal
thesaurus or ontology.

– Legal rules or norms, their antecedents and consequents, including logical
formulations of the rules or their components.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 261 — #3

Extracting Information from Statutory and Regulatory Texts 261

To extract the information, researchers have mainly employed either a KE
approach with rules manually constructed by experts or supervised ML, using SVMs
(see Section 8.5.2), decision trees (defined in Section 4.3.1), or naïve Bayes classifiers
(explained in Section 10.3.3). In this ML work, statutory texts are usually represented
as bags of words or term vectors with frequency information (see Section 7.5.2).

In order to provide a sense of the state of the art in IE from statutory texts, for
each type of information above, here is a more detailed description of the research
on how to extract it.

Functional types of provisions: Researchers employed ML (specifically, a multi-
class SVMmodel and a Naïve Bayes model) to classify paragraphs of Italian statutory
texts dealing with consumer protection in terms of 11 categories including “defini-
tion,” “prohibition” (must not), and “obligation” (must) (see Biagioli et al., 2005;
Francesconi and Passerini, 2007; Francesconi, 2009; Francesconi et al., 2010). In
de Maat and Winkels (2007) and de Maat et al. (2010), the researchers categorized
sentences from an assortment of Dutch statutory texts in terms of 13 classes, including
labels such as “definition,” “publication provision,” or “change–scope.” In Grabmair
et al. (2011) and Savelka et al. (2014), decision tree or SVM models classified differ-
ent states’ statutory directives dealing with public health emergencies as obligations,
permissions (for example, using “may”), or prohibitions.

Function-related features: Some functional types of statutory provisions or norms
take more specific information as elements or arguments. Here “argument” means
something analogous to a math function’s input variables. In addition to extract-
ing functional types, researchers employed NLP to extract arguments of statutory
provisions such as the actor directed to take a specific kind of action with respect
to a recipient. For instance, a data “controller” must provide “notification” to a
“guarantor” (see Biagioli et al., 2005; Francesconi and Passerini, 2007; Francesconi,
2009; Francesconi et al., 2010). The ML algorithms in Grabmair et al. (2011) and
Savelka et al. (2014) also identified similar elements in provisions dealing with pub-
lic health emergencies, such as that a “state or local governmental public health
officer” “may” “order” “isolation” of “someone who is ill” in response to “infectious
disease emergency” when the person “refuses medical treatment.”

Areas or topics of law:More abstract categorizations can be learned, as well, includ-
ing the legal areas or topics. Naïve Bayes and multiclass SVM models learned statute
labels such as environmental law, European law, and criminal law in Francesconi
and Peruginelli (2008). In Opsomer et al. (2009), the authors applied an SVM to
learn to classify statutory texts by categories in an index tree comprising 230 topical
leaf nodes, such as principles and objectives of environmental policy, government,
enforcement, procedures, and instruments of energy policy.

Other work involves identifying in a statutory document the concepts by which
it should be indexed. Much work on mining statutory texts for highly specific topi-
cal and functional information has focused on automatic classification of European
Union (EU) documents in terms of a conceptual ontology such as the EuroVoc

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 262 — #4

262 Legal Text Analytics

thesaurus (Steinberger et al., 2013; EuroVoc, 2014). In Pouliquen et al. (2006), the
authors represented statutory texts as term vectors and compared them to similar
vectors associated with each of the EuroVoc vocabulary terms, such as “protection
of minorities,” “fishery management,” and “construction and town planning.” An
SVM model learned to perform a similar task in Boella et al. (2012) for EuroVoc
terms like “european contract,” “inflation rate,” or “Italy.” The work in Daudaravi-
cius (2012) functions not only in multi-jurisdictional settings but also in multilingual
settings in the EU context.

ML models can also learn a different kind of abstract category, namely relevance
to a particular problem area. In Grabmair et al. (2011), Savelka et al. (2014), and
Savelka and Ashley (2015), one of the categories learned was relevance to the School
of Public Health researchers’ chosen problem area of regulation of public health
emergencies. As noted, this work addresses multiple US states’ statutes concerning
public health emergencies.

Semantic profiles of statutes: Some work combines functional types, abstract
categories, or conceptual indexing into a broader semantic profile of statutes or reg-
ulations. Wyner and Peters (2011) employed linguistically oriented rules to extract
information from a complex, four-page U.S. Food and Drug Administration regula-
tion concerning testing for disease agents in blood. They sought to identify in the
text different types of normative rules, including obligations and permissions and
their antecedents, subject agents, subject themes, and exceptions. In Winkels and
Hoekstra (2012), the authors extracted concepts and definitions from statutory texts
related to Dutch tax law, using semantic web technology and NLP techniques.

Legal rules or norms including logical formulations: Other work has focused on
extracting legal rules or norms generally (see Bach et al., 2013; Wyner and Governa-
tori, 2013), to ensure that business systems are designed to be compliant with relevant
regulations as in Zhang and El-Gohary (2015) and Governatori and Shek (2012), to
develop semiautomated techniques for improving human annotation of regulations
(see Kiyavitskaya et al., 2008; Yoshida et al., 2013), or to extract functional informa-
tion for comparing regulatory rules across jurisdictions (see Gordon and Breaux,
2013; Savelka et al., 2014; Savelka and Ashley, 2015).

The next few sections take a closer look at some of the mechanisms applied
to extract information from the statutory texts and at the empirical evaluations of
these methods. The relevant evaluation metrics are the same ones introduced in
Section 4.4.4.

9.3. automatically extracting functional information
from statutory provisions

Extracting functional information from statutes can be useful for conceptual infor-
mation retrieval (Section 1.3.2). As noted, some systems like that in Francesconi and
Passerini (2007) extract the function of individual legislative provisions from a set of

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 263 — #5

Extracting Information from Statutory and Regulatory Texts 263

figure 9.1. Sample input/output of xmLegesExtractor (Francesconi, 2009, p. 66)

common types such as definition, obligation, liability, prohibition, duty, permission,
or penalty, as well as some function-related features that go with them like the bearer
of an obligation or duty and its beneficiary.

Once extracted, this conceptual information can be applied to the provision in
a kind of semantic markup as metadata in an XML annotation, and compiled in a
legal ontology like the Dalos ontology (see Section 6.4). As a result, the system has
some information about what the concepts in the text mean and uses it to assist in
conceptual retrieval.

For instance, Figure 9.1 illustrates functional information the system extracted
from a provision of Italian data privacy law.

Once such information is incorporated into an ontological index of statutory pro-
visions, human users can search for all of the provisions that assign notification
obligations to “controllers” regarding a “garante” (or guarantor).

9.3.1. Machine Learning to Extract Functional Types of Provisions

In order to extract the functional information from statutes, the researchers in
Francesconi and Passerini (2007) and Francesconi (2009) constructed two tools: (1)
xmLegesClassifier and (2) xmLegesExtractor. The input to the classifier is a para-
graph of text in a statutory provision; the output is the predicted functional type or
class of the provision selected from a set of candidate types and classes (Francesconi
and Passerini, 2007). The inputs to the extractor are the text paragraph and the pre-
dicted type. The extractor outputs fragments of text which correspond to specific
semantic roles relevant for that type of provision (Francesconi, 2009, p. 66).

The project applied ML and KE in complementary ways to the statutory provi-
sions. ML extracted more abstract functional types like “Obligation.” Knowledge-
engineered rules and NLP extracted more specific role-players like “Controller” to
whom the obligation is addressed.

As described in Section 8.3, for purposes of ML in xmLegesClassifier, the docu-
ments were represented as a BOW with unigrams, that is, not phrases. In preprocess-
ing, the system stemmed the words to reduce them to morphological roots, replaced
digits and non-alphanumeric characters with special characters, and represented

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 264 — #6

264 Legal Text Analytics

the document as a term vector with weights. They also employed feature selection
thresholds to eliminate rare terms (Francesconi, 2009, p. 64).

The term vector weights are intended to capture the amount of information a
term conveys about the document’s meaning. The researchers tried four types of
weights, including binary “weight” representing the presence or absence of a term
within a document, term frequency weight representing the number of times a term
occurs within the document, tf/idf weight, in which the weight is proportional to the
frequency of a term in the document and inversely related to the frequency of the
term in the corpus (see Section 6.4), and a weight combining term frequency with
information gain. Distinct from tf/idf, information gain is a measure of how well a
term discriminates across documents in different classes (Francesconi, 2009, p. 64).

The researchers applied a multiclass SVM (see Section 8.5.2) to a corpus of 582
provisions. The SVMs encountered previously in this book made binary decisions
predicting whether a document is relevant or not (see Section 8.4.2) or whether a case
was part of an instant case’s prior history or not (Section 8.5.3). The xmLegesClassi-
fier’s decisions are not binary but multiclass: which of 11 functional types, including
repeal, definition, delegation, etc., applies to the text?

In a multiclass SVM, the goal is to induce a hyperplane boundary separating each
of the multiple classes of positive instances from the rest. Figure 9.2 conveys an
intuition about how multiclass SVMs differ from binary ones. In the figure, solid
lines represent these hyperplanes. The dotted lines represent hyperplanes set with
a certain confidence margin to optimize the fit. The minimal distance between
two dotted lines is called the multiclass margin. Darker points represent support
vectors. Black points illustrate constraint violations. Points with extra borderlines

figure 9.2. Multiclass SVM hyperplane example (see Francesconi and Passerini,
2007, p. 12)

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 265 — #7

Extracting Information from Statutory and Regulatory Texts 265

indicate additional violations due to training errors (Francesconi and Passerini, 2007,
pp. 11–12).

The researchers evaluated their multiclass SVM in a LOO cross-validation exper-
iment. As explained in Section 4.4.3, a cross-validation experiment is a standard
procedure for evaluating a ML algorithm. It is especially useful when there is a lim-
ited amount of data for training and testing. The training and evaluation are arranged
in order to maximize usage of the limited data while ensuring that the ML algorithm
is never tested on the same data on which it was trained.

In a LOO cross validation, the number of folds k equals n, the number of data
points in the corpus. For n different times, the ML model is trained anew on all the
data except for one point which is left out and used as the test set, and a prediction
is made for that point.

The researchers measured the LOO accuracy as the fraction of correct predictions
over the entire number of tests. Their SVM attained a LOO accuracy of 92.64%,
using the simplest, binary scheme for weighting of the words in the feature vector
(Francesconi, 2009, p. 65). As it turned out, the more complex weightings did not
improve accuracy.

After the xmLegesClassifier predicts the provisions’ functional types, it passes
them along to the xmLegesExtractor. As noted, the xmLegesExtractor tool employed
knowledge-engineered text classification rules andNLP to extract specific functional
information associated with each type of provision (Francesconi and Passerini, 2007;
Francesconi, 2009).

9.3.2. Text Classification Rules to Extract Functional Information

Given inputs of legislative raw text paragraphs and the functional types predicted
by the classifier, the xmLegesExtractor outputs text fragments, called lexical units,
representing entities, which play specific roles given the provision’s functional type.
Figure 9.1 illustrates such predefined roles including addressee, action, and coun-
terparty, a sample input and the output of this extraction process, lexical units
representing the role-players, “Controller,” “Notification,” and “Garante.”

The extractor process comprises two steps: syntactic preprocessing and lexical unit
identification. In syntactic preprocessing, it takes the text paragraph and breaks up
the text stream into words, phrases, symbols, or other elements (tokens). It standard-
izes or normalizes the ways in which dates, abbreviations, and multiword forms are
expressed, “lemmatizes” the text, grouping variant forms of the same words together
using an Italian legal lexicon, tags POS, and conducts a shallow parse of the text into
constituents or “chunks.” In lexical unit identification, it identifies all lexical units
acting as arguments or elements relevant to the specific provision type. A grammar
of expert-crafted rules tailored to each specific provision type enables the system to
identify the chunks corresponding to regulatory features of that type, such as those
in Figure 9.1 (Francesconi, 2009, p. 66).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 266 — #8

266 Legal Text Analytics

In order to evaluate the extractor tool, the researchers assembled a gold standard
dataset of semantic roles associated with four functional types of provision: pro-
hibition, duty, permission, and penalty. In an evaluation with 209 provisions, the
rule-based classifier achieved an average precision (AP) and recall of 83% and 74%,
respectively, across four types: prohibition (P 85.11%, R 92.30%), duty (P 69.23%,
R 30.50%), permission (P 78.95% R 100.00%), and penalty (P 85.83% R 89.34%)
(Francesconi, 2009, p. 66).

9.4. ml vs. ke for statutory information extraction

The xmLeges project of the preceding section illustrates a theme in automated IE
from statutes and other legal texts: choosing between ML and KE approaches, or,
alternatively, integrating them.

The KE approach involves identifying clear, easily observable patterns for each
type of provision and manually constructing rules to identify the patterns in new
texts and extract the relevant information.

The ML approach involves manually annotating training instances and using an
ML algorithm automatically to generalize distinguishing features from the training
set of instances.

Each approach has advantages and disadvantages (de Maat et al., 2010). The
KE approach does not require manually annotated training data, but it does
require manually created expert classification rules to capture the standard phrases
associated with each class of provision. The ML approach is more flexible, less
domain-dependent, and requires less expert knowledge. On the other hand, as noted
above, certain statistical ML algorithms, like SVMs, effectively are black boxes. The
reasons for classifying something as a positive or negative instance may not be easy to
divine.Moreover, ML requires a sufficiently large manually annotated set of training
instances.

One research group has tried both approaches on the same task, identifying the
functional types of provisions in two recent pieces of Dutch legislation (de Maat
et al., 2010). The 13 categories of functional types included definition, permission,
obligation, delegation, various types of amending provisions, such as change–scope,
change–repeal, change–renumbering, and others.

The KE classifications had been performed in earlier work. The researchers had
identified a set of 88 patterns of words, extracted manually from studying 20 Dutch
laws, that were associated with different functional types of provisions. The patterns
included verbs or verb phrases (in Dutch) like “may,” indicating a right or permis-
sion, “by x is understood y” for a definition, “is referred to as” for a citation provision,
and “may create rules” for a delegation (de Maat and Winkels, 2009, pp. 32–3). The
patterns were stored in a format for pattern matching against new sentences. Since
provisions include multiple sentences, the classifier sought an explicit pattern in
the first sentence (or list item). If it found one, the whole provision was classified

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 267 — #9

Extracting Information from Statutory and Regulatory Texts 267

table 9.1. Problems for ML vs. KE approaches to statutory provision classification
(de Maat et al., 2010)

Problem Description for
KE?

for
ML?

Keywords in
subordinate
sentences

Keywords strongly linked to a class appeared in a
subordinate clause that does not influence the type
of the main sentence.

X X

Missing standard
phrases

A provision uses a phrase that was not encountered
before.

X X

Variations on
patterns

Variations on known patterns may use the same
words but different word order.

X X

Keywords linked
to multiple
classes

“May” is an indicator of a permission, but “may not”
indicates an obligation.

X X

Insufficient data A standard phrase present in the training set was fil-
tered out due to a minimal required term frequency
of two.

X X

Focus on spurious
keywords

The training set may by coincidence contain many
permissions, for example, that happen to involve
some “advisory board.” The classifier erroneously
assumes that “advisory board” is an indicator of the
permissions category.

X X

Keywords outside
of standard phrase

ML may classify based on one word of a standard
phrase rather than on the complete phrase.

X X

Skewed data Uncommon patterns or classes may bemisclassified
because of their small prior chance.

X X

accordingly. If not, it continued to classify the subsequent sentences independently.
If no sentence contained an explicit pattern, the list as a whole was classified as the
default, a statement of fact (de Maat and Winkels, 2009, p. 33).

For the ML algorithm, the researchers trained a SVM classifier (Section 8.5.2)
using weighted feature vectors of words (unigrams) applying three types of weighting,
binary (presence or absence), term frequency, or tf/idf values (see Section 8.3).

The researchers compared the KE and ML approaches on two recent pieces
of legislation. One made only changes in existing laws while the other included
such changes and also imposed new law. The researchers found that ML scored
slightly better than KE on the former, but worse on the latter. In particular, ML had
problems with the classification of definitions and with the distinction between per-
missions and obligations. The researchers analyzed the errors and listed their causes,
including those in Table 9.1.

As the table indicates, keywords appearing in subordinate sentences or missing
standard phrases can be problematic for both KE and ML. Variation in pattern word
order causes problems for KE, but ML is insensitive to word order (at least where a

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 268 — #10

268 Legal Text Analytics

bag of words representation applies). A lack of data, spurious correlations between
words and categories, or keywords that are not discriminatory are all problems for
ML (de Maat et al., 2010).

Choosing between KE and ML involves a number of trade-offs. KE requires
manually formulating rules to capture relevant patterns that identify instances of
a classifier. ML identifies distinguishing patterns automatically although ML does
not necessarily identify the same patterns as KE does and it requires the preparation
of a training set of manually classified provisions. In the above experiments involving
Dutch laws, KE and ML achieved roughly similar classification accuracy. In classi-
fying provisions in a new law that was somewhat different from that of the training
set, the KE rules achieved higher accuracy than the SVM classifier. It is possible,
however, that a larger training set would improve the ML model’s transferability
(de Maat et al., 2010). When it comes to debugging, that is, inspecting the classifi-
cation errors, the KE approach provides more useful information about rules that
are missing, that a pattern should have triggered but did not, or that a pattern trig-
gered but should not have. As noted previously, the SVM classifier’s model is much
harder to inspect, although otherMLmodels, such as decision trees, aremore readily
inspectable.

Another aspect of choosing between KE and ML is the possibility of combin-
ing the two in hybrid models. For example, as discussed in Section 10.5.3, the
LUIMA program employs ML for sentence role identification and KE for anno-
tating subsentence types such as StandardLegalFormulations, for instance, “plain-
tiff must prove.” Since such formulations present clear examples of patterns, one
naturally turns to constructing rules to identify them. ML serves as an effective
alternative where the distinguishing patterns are less clear or involve things like
StandardLegalFormulations as components.

9.5. extracting logical rules from statutes and regulations

Extracting logical rules from the texts of statutes and regulations is an important goal
for automating legal reasoning. Imagine the possibilities of automatically populating
the BNA program (Section 2.3.4), or the Carneades program (Section 5.3.1), with
rules gleaned automatically from the texts of the BNA or German family law statutes.
It is an ambitious goal, but, unfortunately, a difficult one to achieve.

Natural language tools alone are probably not sufficient for the task. In Wyner and
Governatori (2013), the researchers conducted a pilot study using a state-of-the-art
open-source natural language translation tool, C&C/Boxer, to translate regula-
tory statements into semantic representations. The authors compared the output
representations against manually created defeasible logical representations of five
sentences from the Australian Telecommunications Consumer Protections Code
(2012) on complaint management.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 269 — #11

Extracting Information from Statutory and Regulatory Texts 269

figure 9.3. Sample statutory sentences annotated for logical parts: antecedents <A>,
consequents <C>, and topics <T> (Bach et al., 2013)

For example, for the provision, “Suppliers must provide a means for the consumer
to monitor the complaint’s progress,” the semantic representations identified the
individuals, events, relations, and temporal relations. The tool identified the modal
must, but it did not indicate the bearer of the obligation nor did it identify the scope
of the modal operator. Finally, the representation did not capture the application of
the norm to suppliers, in general.

In order to have any success at all in automatically extracting logical rules from
statutory texts, it seems necessary to focus on a narrow area of law and to identify
logical structures characteristic of that area to use as templates for rules.

For example, one project has applied ML to extract logical structures from
statutory paragraphs in a corpus involving the Japanese National Pension Law. Sys-
tematic studies of multi-sentence provisions in the corpus had identified four types
of relations between main and subordinate sentences, and their associated logical
structures to use as templates (Takano et al., 2010). The authors of Bach et al. (2013)
presented a two-stage framework for extracting from the paragraphs logical rules that
impose obligations on specific agents under specific conditions. The program first
learns a classifier to identify “logical parts” including antecedents (A), consequents
(C), and topics (T) in the statutes. Figure 9.3 shows two examples of statutory sen-
tences annotated for such logical parts. Based on the parts, the program then learns
a classifier to select an appropriate template with which to combine the parts into
logical structures and a completed rule.

Given a new legal paragraph the first classifier identifies its logical parts, the
second classifier selects applicable logical templates, and the system assembles the
logical rule based on the templates. The authors demonstrated some success with a
subset of the logical structures identified in the Japanese National Pension Law, but
the system’s second phase, identifying the logical structure templates in a paragraph
of law, worked considerably better with logical parts input by human experts than
with those that the system identified automatically (Bach et al., 2013, p. 3:27).

Extracting rules by focusing on narrow areas of legal regulation and identify-
ing logical structures characteristic of that area has also been applied in modeling
regulations governing the design of products such as buildings.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 270 — #12

270 Legal Text Analytics

9.6. extracting requirements for compliant product designs

Regulatory compliance, discussed in Section 2.5.1, is an important practical concern
in many industries involving the design of products, systems, or other artifacts. For
example, building codes specify constraints on architectural designs such as a rule
that “Courts [in the sense of open areas surrounded by building walls] shall not be
less than 3 ft in width.”

Regulatory codes govern product design in most areas of engineering such as civil,
electrical, and environmental. The codes vary widely across regions, communities,
and governmental levels. Even though regulations may constrain the product or
system design, the product engineers and systems designers may not know which
regulations apply. Conversely, the legal staff may not understand technical aspects
of the proposed designs and, thus, fail to foresee the regulatory implications.

Considerations like these have led researchers to attempt to extract rules automat-
ically from regulatory texts so that they can be applied more-or-less automatically
to test whether proposed designs satisfy relevant legal constraints. For instance, one
approach automatically extracts information from a corpus of construction regula-
tions and transforms it into logic clauses that could be used directly for automated
compliance checking (Zhang and El-Gohary, 2015).

The authors developed a multistage approach that involves:

1. Text classification (TC): ML-based TC identifies sentences that contain the
types of requirements relevant for automatic compliance checking (e.g.,
regulatory requirements in the construction industry),

2. Information extraction: rule-based, semantic NLP identifies in the relevant
sentences the words and phrases that carry target information and labels them
with predefined information tags, and

3. Info Transformation Rules (ITr): semantic NLP algorithms (ITr) employ
pattern-matching rules to transform extracted information into logic state-
ments with which a logic program can reason. The rules employ syntactic
and some semantic information.

For example, TC recognizes a sentence like the following as relevant for auto-
mated compliance checking of building designs: “Courts shall not be less than 3 ft
in width.” IE tags targeted words and phrases, such as:

Subject: Court

Compliance checking attribute: Width

Comparative relation: Not less than

Quantity value: 3

Quantity unit: Feet

Quantity reference: Not applicable.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 271 — #13

Extracting Information from Statutory and Regulatory Texts 271

Then, an ITr rule fires; its left-hand side identifies a rule pattern:

subject + modal verb + negation + be + comparative relation + quantity
value + quantity unit + preposition + compliance checking attribute.

The right-hand side of this rule is: “Generate predicates for the ‘subject’ infor-
mation instance, the ‘attribute’ information instance, and a ‘has’ information
instance.”

Once the ITr rules have generated elements, a consume-and-generatemechanism
combines the elements into a logic clause:

compliant–width–of–court(Court) ifwidth(Width), court(Court), has(Court,Width),
greater–than–or–equal(Width,quantity(3,feet))

The ITr patternmatching rules were developed based on two chapters of the Inter-
national Building Code and tested on the text of a third chapter which served as a
gold standard. In that third chapter, 62 sentences containing quantitative require-
ments were identified automatically from which 62 logic clauses were constructed
manually involving 1,901 logic clause elements.

An experiment assessed the precision and recall of the system’s ITr pattern match-
ing rules in generating those 1,901 logic clause elements based on the information
tags extracted automatically from the third chapter. Two versions of the experiment
were run, one with a smaller set of information tags and the other with a more inclu-
sive set. The latter version yielded better results: precision: 98.2%, recall: 99.1%, and
F1 measure: 98.6% (Zhang and El-Gohary, 2015).

The authors determined that the errors in identifying logic clause elements were
caused by the IE process missing or erroneously identifying tags, errors in processing
sentences with uncommon expression structures,matching errors due tomorpholog-
ical features, problems with certain patternmatching rules, and structural ambiguity
in the regulatory texts’ use of conjunctions. For example, the scope of the “and” in
“shear wall segments provide lateral support to the wall piers and such segments
have a total stiffness. . .” is not specified. It may conjoin “wall piers” and “such
segments” or the preceding clause and the following clause. This is an interest-
ing example of the challenge of dealing with syntactic ambiguity in legal statutes
(Section 2.2.2).

Despite the very high performance, there are some limitations. First, the exper-
iment focused only on processing quantitative requirements. These are important
in a building code and in many similar engineering codes, but even those codes
employ other sorts of requirements, not expressed in quantitative terms, which may
be harder to analyze. Second, the experiment was limited to testing one chapter of
the International Building Code, due in part to the difficulty of manually creating
the gold standard.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 272 — #14

272 Legal Text Analytics

9.6.1. Implementing Compliance with Extracted Regulations

The project of Zhang and El-Gohary (2015) concerning quantitative construction
requirements is a good example of extracting complex logical rules directly from
regulatory texts. Like the approach in xmLegesClassifier and Extractor (Section 9.3),
it combines ML in step (1) to extract the types of regulatory requirements and KE
rules in step (2) to extract the words and phrases with which to operationalize a rule.
This work, however, takes the important extra step (3) of actually constructing such
a rule that can be applied directly for compliance testing.

The project focuses on a fairly restricted type of regulatory provision. As yet, there
is no general approach to automatically extracting logical rules from the texts of
legal regulations. ML and KE take one part way, but assembling the extracted parts
into logical rules requires specialized rules and templates tailored to logical patterns
characteristic of specific types of regulation.

The project in Governatori and Shek (2012) dealing with telecommunications
consumer complaint handling (Section 2.5.5) exemplifies reasoning with logical
rules automatically to check on an institution’s real-world regulatory compliance.
It illustrates an ingenious way to apply the logical rules directly in a realistic busi-
ness context. The authors demonstrated a technological design environment that
incorporated regulatory requirements from (still) manually constructed defeasible
rules governing communications systems. Human designers employing the tools can
design a communication system that is guaranteed to comply with the logical rules
extracted from the regulations.

It is interesting to imagine other settings in which logical rules extracted auto-
matically from regulatory texts could be applied directly to monitoring real-world
business compliance. In some compliance contexts, legal regulations govern cor-
porate documents, suggesting another way to directly apply extracted rules. For
instance, the implementing regulation of the Truth in Lending Act, Regulation
Z, 12 CFR Part 226, specifies certain regulatory requirements that must be met if
various “trigger words” appear in advertisements. According to the regulation, men-
tion of an Annual Percentage Rate (APR) in a credit card advertisement triggers a
requirement to make certain corresponding disclosures. In this compliance context,
one could imagine extracting logical rules for monitoring these advertising require-
ments directly from regulatory texts and applying them directly to texts or transcripts
of advertisements (Deisher-Edwards, 2015).

9.6.2. Semiautomated Approaches to Improving
Human Annotation for Compliance

Researchers have also devised semiautomatic techniques for extracting rights and
obligations from regulatory texts, for example, from the U.S. Health Insurance
Portability and Accountability Act (HIPAA). The automated techniques improve

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 273 — #15

Extracting Information from Statutory and Regulatory Texts 273

human annotators’ performance (Breaux et al., 2006). In Kiyavitskaya et al. (2008),
the researchers employed a semiautomatic semantic annotation tool, Cerno (see
Zeni et al., 2013), with an extension for regulatory texts, Gaius T, to extract rights,
obligations, or exceptions from the U.S. HIPAA Privacy Rule provision.

Cerno uses a context-free grammar, that is, rules describing how to form state-
ments from a language’s available symbols that satisfy the language’s syntax, to
generate the parse tree of a text whose constituents are legal language textual ele-
ments. Annotation rules then analyze the parsed texts, annotating them with tags
indicating the presence or absence of certain concepts. The concepts are selected
from a domain ontology. Each one has an associated vocabulary of indicators, com-
prising literal words and names of parsed entities which should (or should not) be
present. Finally, transformation rules select certain of the annotated text fragments
and output templates whose fields are filled in based on the annotations.

For extending the tool to annotate regulatory texts, the authors manually analyzed
a fragment of the HIPAA Privacy Rule and generated lists of indicators for four major
concepts:

1. Right: an action a stakeholder is conditionally permitted to perform;
2. Obligation: an action that a stakeholder is conditionally required to perform;
3. Constraint: the part of a right or obligation that describes a single pre- or post-

condition; and
4. Exceptions: which remove elements from consideration in a domain (Kiyavit-

skaya et al., 2008, p. 5).

Applying the tool to other fragments of the HIPAA Privacy Rule (and to an Italian
statutory provision), the researchers compared the numbers of rights, obligations,
constraints, and cross-references identified by the system with those identified by
a human. The results were roughly comparable. The evaluation demonstrated the
need for adding more normative phrases to identify constraints. In addition, the sys-
tem had some difficulty identifying the subjects and objects of constraints, as well as
identifying the subjects of conjunctions and disjunctions.

Significantly, the researchers compared the outputs of nonexpert human annota-
tors who worked with texts that Gaius T had already annotated and those who did
not. The former group were about 10% more productive, worked about 12% faster,
and produced annotations as accurate as those of annotators who did not work with
the automatically annotated texts (Kiyavitskaya et al., 2008, p. 9).

Similarly, in Yoshida et al. (2013), the authors demonstrated that humans anno-
tating statutes in terms of various templates performed more accurately and effi-
ciently when supported by a tool which highlighted terms in the documents that
corresponded to the templates.

The authors defined three templates for capturing information from statutory
texts. A definition template is used to annotate definitions of legal terms employed
in the statute. A function template identifies the types of functional processes that

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 274 — #16

274 Legal Text Analytics

figure 9.4. Term suggestions for annotation templates (see Yoshida et al., 2013)

a statutory provision requires (or permits, etc.). A data template identifies data or
information that the statute requires a regulated party to input into the functional
process. They associated various words, concepts, and phrases with each of the three
template types. For example, the phrase “hereinafter referred to as . . .,” appearing in
a parenthetical, suggests applying a definition template. Noun terms like “Notifica-
tion” and verb terms like “report to” suggest using the data template to specify the
information the statute requires be submitted. Verb terms like “pay” suggest statutory
processes for annotation with a function template.

Their tool preprocesses statutory texts for human annotation, identifying the var-
ious words, concepts, and phrases that suggest the annotators apply the associated
template. As illustrated in Figure 9.4, the tool uses a single underline to suggest the
data template, a double underline for the function template, and a dotted line for
the definition template.

A human selects the template associated with the cue and manually fills in the
required information. The definition template requests the term and definition. In
the context of Figure 9.4, this would be “qualified recipient,” “a person who has
recipient qualification.” The function template requests the process, anymodal qual-
ification, and conditions, for example, “paid,” “shall,” “with regard to the days.”
The data template requests the article identifier, actor, action, data and source,
modal qualifier and conditions, such as “Art. 15(2),” “public servant,” “input,” “data
from employment application of qualified recipient,” “shall,” “after separation from
employment.”

In a small experiment, two groups, each comprising two civil servants and one
student, annotated multiple provisions of a Japanese statute with which they were
unfamiliar, one group with the tool and one without. The focus of the task was
annotating the statutory functions in the provisions, of which the researchers had
determined there were 22. The participants in the group using the tool completed
the annotation task more quickly (an average of 9.5 vs. 11 hours) and achieved higher
accuracy and coverage in identifying the functions.

These two projects illustrate the utility of tools that use knowledge engineered
rules and templates to partially annotate texts in support of human annotation.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 275 — #17

Extracting Information from Statutory and Regulatory Texts 275

Not only can these tools make human annotators’ work more efficient, they can also
enable nonexpert humans to annotate as well as experts. This may help meet the
growing need for annotation to index statutes for conceptual retrieval (Section 6.5)
and for compiling training sets for ML to automate annotation. For instance, the
tool described above that helps nonexpert humans to annotate statutes in terms of
actors, actions, modal qualifiers, and conditions would have helped in annotating
public health statutes for ML, automated annotation, and the construction of statu-
tory networks as described below in Section 9.7.1. Computerized support for human
annotation of statutes and cases for ML, including annotation by students and via
crowdsourcing, is also discussed in Sections 10.6 and 12.5.2.

9.7. extracting functional information to compare regulations

An important component of business compliance is the need to compare similarly
purposed regulations across jurisdictions. Many industries and commercial insti-
tutions span multiple state and international boundaries. In areas like insurance,
health care, computer security, and privacy regulation, these institutions are subject
to multiple states’ laws. While the overall goals of the different state and national
regulatory frameworks might be similar, the regulations themselves may differ in a
multitude of ways. Keeping track of the differences and factoring them into plans for
regulatory compliance are constant concerns.

Travis Breaux has developed a semantic model to automate extraction of require-
ments from legal texts and a legal requirements specification language general
enough to enable comparison of regulations across jurisdictions. He and his col-
leagues developed a “requirements watermarking technique” for comparing the
stringency of privacy and security standards across jurisdictions (Gordon and Breaux,
2013).

The researchers studied how regulatory drafters employ “legal design patterns”
in order to impose constraints on the design of industrial scale information sys-
tems. Their model demonstrates how coordinated legal definitions, requirements,
and exemptions shape policy by relaxing or restricting the logical scope of legal con-
straints (Breaux and Gordon, 2013). An example of such a legal design pattern is
a “suspension,” “in which a permission . . . is an exception to an obligation . . .[;]
satisfying the conditions of the permission causes the obligation to be suspended”
(Breaux and Gordon, 2011, p. 11).

Comparison across legal instruments is also important. Breaux’s privacy require-
ments specification language (Eddy) models legal requirements applied to complex
data flows involving multiple parties (Breaux et al., 2014) and has been used to
compare current corporate data privacy policies (Breaux et al., 2015).

Statutory network representations of states’ laws on some topic (Section 2.6)
can also be compared. The network diagrams graphically depict certain aspects of

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 276 — #18

276 Legal Text Analytics

the regulations. One can compare those aspects of different states’ laws both graphi-
cally (Grabmair et al., 2011) and quantitatively in terms of network analytics such as
density, inclusiveness, degree, strength, reciprocity, and hub-and-authority (Ashley
et al., 2014). For example, the statutory network illustrated in Figure 2.10 compares
Pennsylvania’s and Florida’s statutes regarding public health emergency surveil-
lance. A similar network approach could be useful in other compliance domains
where multiple jurisdictions have parallel regulatory systems. In addition, employ-
ees, business system designers, field agents, or other nonlegal personnel could
retrieve statutory sources substantiating a link in the diagram simply by clicking it
(Ashley et al., 2014).

9.7.1. Machine Learning for Constructing Statutory Networks

Statutory network representations of regulatory schemes across jurisdictions require
a considerable amount of data about the different jurisdictions’ statutes. In the
project mentioned above, School of Public Health personnel used LexisNexis
queries to retrieve 12 states’ statutes dealing with public health emergencies.

They manually coded the texts of the state statutory provisions for nine classifi-
cations in a kind of template that captures: the acting agents in the Public Health
Service (PHS) that the provision directs with some level of prescription to perform
a certain action with respect to some receiving agents under certain conditions, with
certain goals and purpose regarding some type of emergency disaster in some time
frame. The coding concepts, italicized above, are explained as follows:

Relevance: Is the provision relevant for purposes of the Public Health School
analysis? If “yes”:

Acting PHS agent: Whom does the provision direct to act?

Action: What action does the provision direct?

Receiving PHS agent: Whom does the provision direct to receive the action?

Prescription:With what level of prescription is the action directed: “may”? “must”?

Goal: For what goal is the action directed to be taken?

Purpose: For what purpose is the action directed to be taken?

Type of Emergency Disaster: Is the emergency disaster an epidemic, train wreck,
nuclear accident, etc.?

Time frame: In what time frame can/must the action be taken?

Condition: What circumstances govern if the action is taken?

The encoding task would bemore feasible ifML could extract certain information
from statutory texts. From a manually encoded training set for each state, the ML
system could learn to classify that state’s provisions in terms of relevance as well as
each of the other nine coded categories.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 277 — #19

Extracting Information from Statutory and Regulatory Texts 277

That is the hypothesis underlying the line of work inGrabmair et al. (2011), Savelka
et al. (2014), and Savelka and Ashley (2015), mentioned in Section 9.2. In particular,
the work addresses three issues that arise in extracting information from statutes
using ML:

1. Representing statutory provisions in machine classifiable units or “chunks,”
2. Selecting the learning algorithm to apply, and
3. Dealing with sparse training data.

Chunking and Representing Statutory Provision Texts
The first issue is deciding how to divide statutory provisions, which can be quite long,
into manageable, meaningful chunks for purposes of classification and how best to
represent them.

For any sentence in a subsection of a statute, its meaning depends not only on the
sentence’s composition, but also on its context among the other sentences in that
subsection, the other subsections in that section, the other sections in the statute,
and, perhaps on other statutes, as well. In addition, some subsections may be parts
of lists or other internal structures of a legal provision that, presumably, bear on the
meaning of any item in the list.

The question is how to operationalize this context in a computationally reasonable
way, and it turns out that there are many options.

In Savelka et al. (2014) and Savelka and Ashley (2015), each statutory document,
that is, each provision of the statute, was viewed as a tree graph and divided into
smaller parts or chunks that comprised the text elements on a path from the root
node to each leaf node. For example, Figure 9.5 shows a provision of a Florida statute
partitioned into seven subtrees, one of which is highlighted in bold face text. This is
the chunk that corresponds to leaf node 5, corresponding to the fifth item of the list
in subsection (b) of the provision. For purposes ofML, that is the chunk representing
Fla. Stat. §101.62 (1) (b) 5.

The statutory tree graph approach has two virtues. (1) Each of the chunks can be
referred to uniquely via a citation. (2) As a longitudinal slice through the tree, the
chunk captures some of the statutory context of a leaf-node text. Other aspects of
the statutory context such as fraternal leaf nodes are omitted. One can employ the
statutory tree graph as a framework for defining variations that capture more of the
statutory context, for example, by including contiguous leaf nodes in the chunk.

The next issue is how to represent each chunk or “text unit” for purposes of ML.
Similarly to the basic ML setup (Section 8.3) in Savelka et al. (2014) and Savelka
and Ashley (2015), stop words and particular words in titles such as “Title,” “Part,”
or “Chapter” were removed, numerical digits were replaced with a standard token,
words were put in lower case and normalized form, and the classification codes
assigned by the expert human annotators were included.

Each text unit was then represented as an n-dimensional term vector with each
dimension corresponding to a unique term in the document collection and with a

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 278 — #20

278 Legal Text Analytics

figure 9.5. Partitioning statutory provision into subtree chunks

magnitude corresponding to the tf/idf weight of that term (see Section 6.4). This is
similar to the representation in Francesconi and Passerini (2007).

9.7.2. Applying an ML Algorithm for Statutory Texts

In working with a corpus of public health emergency statutes, the researchers have
applied both an SVM (Section 8.5.2) and decision trees (Section 4.3.1) (Grabmair
and Ashley, 2011; Savelka et al., 2014; Savelka and Ashley, 2015).

In terms of effectiveness in extracting information from statutory texts, there seems
to be no discernible difference. As noted, however, decision trees are easier than
SVM models for humans to inspect and determine which features are more impor-
tant for discriminating positive and negative instances. Given the exploratory nature
of the work, the interpretability of the models led the researchers to opt for using
decision trees.

Let’s consider in more detail the process of learning a decision tree to classify
the text units of the previous section by relevance to the School of Public Health
study. (The process is similar for learning decision trees for each of the other nine
categories.) A text unit is represented as a feature vector of tf/idf value for each of
an ordered set of terms. The feature vectors are very long comprising thousands of
entries corresponding to all the terms present in the corpus. Most of the entries are
0, however, indicating that the corresponding term is not in the text unit.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 279 — #21

Extracting Information from Statutory and Regulatory Texts 279

figure 9.6. Decision tree for classifying statutory text units as relevant (rel.) or irrele-
vant (irrel.) to the School of Public Health study

In learning a decision tree from the text units in a training set, the algorithm first
picks a feature on the basis of which it will split the data. Let’s say that it is attempting
to split the data between the text units that are relevant to a given query and those that
are not. First, let’s assume that the features are binary as in the decision tree for bail
illustrated in Section 4.3.1. The feature values in Figure 4.2’s decision tree are “yes”
or “no,” indicating, for instance that the offense did or did not involve drugs or that
the offender had a prior record or not. Where the features are binary, an algorithm
can only split the data based on equality of a feature’s value and the test’s conditions.
The algorithm adds a decision node to the tree that tests the value of the feature: if
“yes” take the right branch and if “no” go to the left.

In contrast, the feature vectors representing text units may have numerical values
such as tf/idf values. The test at a decision node would be something like this: if the
tf/idf of a selected feature≥ 0.5 go right, else go left. See Figure 9.6 for a hypothetical
decision tree for classifying text units representing statutory provisions as relevant or
not. The tests at each branch are shown in boxes.

Beside determining the threshold, the algorithm also needs to determine which
of the features is the best one to test at that given point. This requires some measure
(such as entropy or Gini impurity, see Kakwani (1980)) of the homogeneity of the
target classification within the subsets of data if it were split at that feature. The
algorithm inspects one feature after another and determines how good a split can
be effected given the data with respect to that measure. The algorithm chooses a
split that maximizes the expected value of the information gained by that split as
compared to the others. Once it computes the best feature available for splitting, it
performs the split inserting a branch into the decision tree.

Having performed the split, the algorithm repeats the same process for the nodes
that have been created on the branches but now it takes into account only the parts of
the data set that belong to that node. The algorithm proceeds in this manner until a
stop condition is met, for example, when some maximum depth of a tree is reached.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 280 — #22

280 Legal Text Analytics

When one inspects the resulting decision tree (Figure 9.6), one sees just below the
root node (C0) that a feature corresponding to the word “emergency” was selected as
providing an opportunity for the best split. One may also see the tf/idf value cutoff for
the split. For example, it could simply be “> 0,” whichmeans, in effect, that the word
is present in the text. One may see that out of the, say, 500 documents, 400 were sent
to the left as irrelevant (C1) and 100 matched the splitting condition and were sent
to the right (C2). The algorithm repeats the same process at node C2 but now it
takes into account only text units associated with C2, of which 70 were relevant and
30 irrelevant. From node C2, one can see that the word “health” was selected as
the second opportunity for splitting. If text units have tf/idf values of “health” over a
certain threshold, they were assigned to a right branch, otherwise to the left.

Onemay again follow to the right and discover that it leads ultimately to a terminal
leaf node, C6, that contains text units labeled as relevant, that is, documents with
tf/idf values surpassing the above thresholds for “emergency,” “health,” and “epi-
demic.” In a similar way, one can inspect all of the paths in the tree. Note that 10
text units at node C6 all happen to be relevant. In fact, all of the terminal nodes
C5 through C8 contain text units with uniform results but that would not neces-
sarily be the case. If the terminal condition were some maximum tree depth, the
leaf nodes would probably contain text units with mixed results and no classification
could be made.

Once the decision trees were constructed for 10 categories (relevance, acting
agent, prescription, action, goal, purpose, emergency type, receiving agent, time
frame, and condition), classification of the text units proceeded in two steps. In the
first step, all of the text units were classified in terms of their relevance for the public
health analysis. In the second step, the relevant text units were further classified in
terms of the remaining categories.

9.7.3. Evaluating the ML Algorithm on Statutory Texts
and Dealing with Sparse Training Data

In experiments, the system has been evaluated by comparing the ML classifications
and a gold standard of the classifications generatedmanually by the expert annotators
from the School of Public Health. These evaluations have been conducted as cross
validations similar to those described above (Grabmair et al., 2011; Savelka et al.,
2014).

For the Pennsylvania corpus, performance across the nine categories varied con-
siderably in Grabmair et al. (2011). For all categories except Action, ML achieved
F1 measures higher than or equal to that of the two baselines: the most frequent
code (MFC) for an attribute and a keyword-enhanced MFC. The ML F1 measures
ranged from a low of 24% for goal to 86% for time frame with an average across nine
categories of F1 = 54%.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 281 — #23

Extracting Information from Statutory and Regulatory Texts 281

One of the reasons for the relatively low performance was the problem of scarce
training data. The public health experts’ annotation codebook is fairly detailed and
the number of codes available for a given attribute may be large. As a result, the
number of instances of a given code can be very small.

In order to mitigate the problem of data sparsity and boost the classifiers’ perfor-
mance, the researchers explored using data from other jurisdictions. They combined
one state’s training data with that of other states in order to increase the amount of
training data.

On the surface this idea seems appealing, but statutory texts in different jurisdic-
tions often differ in a variety of ways even if they deal with similar subject matter.
Legislators from different states may employ different terminology and structural pat-
terns. For example, the Pennsylvania (PA) corpus of relevant statutory texts contained
1.7 times as many provisions as those of Florida (FL) but took up only 70% of the
space. As a result, the relevant FL statutory texts tended to be longer than the PA
statutory texts. The FL statutory texts also seemed to be more fragmented; the FL
corpus generated 11,131 text units while the PA corpus had only 6,022 text units. There
were 4,764 unique terms (excluding stop words) in the PA corpus and 6,569 terms
in the FL corpus. Thus, it was an empirical question whether one could combine
training sets across jurisdictions and improve performance.

In Savelka and Ashley (2015), the researchers described a framework for facilitating
transfer of predictive models for classification of statutory texts among multiple state
jurisdictions. For each of two target states, including Florida, training and test sets
were created through fivefold cross validation using random sampling and repeated
20 times. That is, the program was run 100 times, each time with about 20% of the
corpus used as training data and 80% as test data but randomly reassigning provisions
to each on each run.

Figure 9.7 shows box plots for all of the runs in the Florida experiment. Each
cluster of eight box plots shows the progression of performance in terms of the F1-
measure on each of the eight tasks. The first box plot in any cluster summarizes 100
runs of the experiment in which no additional states’ data set was used. The second
box plot describes the 300 runs of the experiment in which an additional state’s data
set was used. For each 100 runs a different state’s data set was used. The eighth box
plot summarizes 100 runs of the experiment in which all seven extra states’ data sets
were used.

As can be clearly seen from the generally upward trends to the right of each clus-
ter, for all of the tasks the classifiers’ performance tends to improve as more states’
data sets are used. For the FL corpus, the average F1 measures for nine categories
improved from 54% using no additional state’s data to 58% using data from seven
additional states. The performance improved even though the additional training
data came from different states whose statutory systems and language vary. The
results also show that the performance is not harmed when additional data sets

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 282 — #24

282 Legal Text Analytics

figure 9.7. The box plot summarizes the results of all the experiments on each of the
tasks for Florida (FL). Each box plot describes performance in terms of an F1-measure
within a single experiment. The tasks included identifying: AA (acting agent), PR (pre-
scription), AC (action), GL (goal), PP (purpose), ET (emergency type), RA (receiving
agent), CN (condition), TF (time frame) (Savelka and Ashley, 2015)

are used. At worst, the performance levels off (Savelka et al., 2014; Savelka and
Ashley, 2015).

9.7.4. Applying LUIMA to Enrich Statutory Text Representation

The projects described above (specifically Francesconi and Passerini, 2007;
Francesconi, 2009; Bach et al., 2013; Zhang and El-Gohary, 2015), with their multi-
staged or pipeline approaches, multilayered representations of statutory texts, and
combinations of KE rules and ML, suggest the utility of applying the LUIMA
approach introduced in Section 6.8 to annotating statutes.

Rule-based annotators could enrich the representation of the texts of statutory pro-
visions with semantic subsentence- and sentence-level annotations. The LUIMA
type system (Grabmair et al., 2015) could be adapted to the Public Health (PH)
Emergency statutory domain including: sentence-level types for legal rules and

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 283 — #25

Extracting Information from Statutory and Regulatory Texts 283

subsentence-level types for Premise and Consequent (see Bach et al., 2013) and sub-
sentence and mention types for PH agents, PH concepts, agent actions, properties
of agents/concepts, regulation elements, and language clues.

The researchers plan to test the hypothesis that, by semantically annotating statu-
tory provisions and classifying them based on the annotations, one can outperform
classification systems that do not take into account such semantics. For example,
the system could annotate a word “infirmary” as a mention of an agent who is play-
ing an active role in a provision and is of the type “hospital” or a phrase “shutdown
water supply” as a mention of an action, of the type “restrict,” that a certain agent is
required to carry out. The annotations could supplement word n-grams as features
for ML classifiers.

The goal of the classifiers is to assign provisions with categories/labels for a number
of prespecified attributes. For example, the system may label a specific provision as
an “obligation” or as concerned with “air pollution emergencies.”

If the approach were successful, labels assigned to a statutory provision could act as
a kind of projection of that provision to the more general conceptual level of the type
systemwhile semantic annotations localize concepts in the text of the provision. This
means that the system could substitute more abstract or more specific terminology
as appropriate.

The annotators could parse queries entered by a user to determine which con-
cepts are mentioned and, optionally, expand the queries accordingly. For example,
if the query contained a word “Ebola,” the system could determine that “infectious
disease” is mentioned, broaden the query, and retrieve statutory provisions contain-
ing mentions of “infectious disease” even though they do not contain the exact
word,“Ebola.” This would help to ensure that relevant provisions are not excluded
from the results simply because a user was too specific with the query.

The system could also utilize the labels and annotations to measure how semanti-
cally close each of the retrieved provisions is to the query and order them accordingly.
If a user enters a query “hospital must report Ebola,” the system would likely rank
highly a provision containing an “obligation” for an agent of type “hospital” related
to an “infectious disease” where the required action is semantically related to “report-
ing.” This would be the case even though the provision contained few if any of the
words appearing in the query.

This would also enable the system to summarize each provision as a sentence com-
posed of the annotation labels in order to convey more succinctly what the sentence
is about. This generalized summary may help a user make preliminary assessments
of the relevance of retrieved provisions.

9.8. conclusion

As we have seen, automated extraction of logical rules from statutory texts is not just
a matter of applying NLP but poses additional challenges.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C09” — 2017/5/27 — 11:50 — page 284 — #26

284 Legal Text Analytics

If a theme emerges from the work reported in this chapter, it is the importance of
identifying recurring structures or patterns in statutes and regulations that relate to
the forms and meaning of normative rules, including:

– logical structures that characterize legislation generally or specific laws,
– patterns or templates of terms, grammatical roles of words, types of concepts,

modal verbs, and other elements characteristic of normative rules generally or
in specific laws, or

– legal design patterns of coordinated definitions, requirements, and exemptions
characteristic of particular regulated domains.

Automating programs’ and humans’ understanding of the normative rules will
benefit from identifying such patterns, devising rules to compose elements into
patterns or to decompose patterns into elements, and developing techniques for
visualizing the patterns.

Enriching the representation of statutory texts with a hierarchical type system like
LUIMA, that captures aspects of these patterns seems likely to be useful for ML.
In the following chapters, we examine some efforts to use LUIMA annotations to
extract information associated with patterns of argumentation from legal cases.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.009
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:25:05, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.009
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 285 — #1

10

Extracting Argument-Related Information from
Legal Case Texts

10.1. introduction

Chapter 8 explained how ML can be applied to legal texts, and Chapter 9 explored
methods for extracting information from statutory and regulatory texts. This chapter
continues that discussion but focuses on using ML, NLP, and manually constructed
rules to extract information from the texts of legal decisions, focusing particularly on
argument-related information.

Information in legal cases is argument-related if it is about the roles of sentences
and other information in the argument presented in a case. This includes sen-
tence roles as, for example, statements of legal rules in the abstract or as applied to
specific facts, or as case holdings and findings of fact. It also includes more general
roles such as propositions in arguments, premises or conclusions, and the argument
schemes (Section 5.2) that justify the conclusions given the premises, schemes such
as analogizing the current facts to a prior case or distinguishing them. Finally, it
comprises information that affects the strength of an argument such as legal factors,
stereotypical fact patterns that strengthen a claim (Section 3.3.2), or evidence factors
(Section 5.8).

At various points in this book, it has been asserted that argument-related infor-
mation would support conceptual legal information retrieval if IR programs could
identify it. The next chapter provides preliminary evidence in support of this claim.
Here we discuss text analytic techniques that can extract some of this information
from case texts. In particular, it describes an architecture for applying a type system
and text annotation pipeline to process case texts for argument-related information
about sentence roles. It continues the discussion of LUIMA (Legal UIMA), the law-
specific semantic extraction toolbox based on the UIMA framework and designed to
automate the conceptual markup of legal documents.

The chapter then revisits the task of manual annotation of legal texts, neces-
sary in order to create training sets of documents for ML classification. Ostensibly

285
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 286 — #2

286 Legal Text Analytics

a task for human annotators with some level of domain expertise, clever decom-
position of the annotation tasks may make possible crowdsourced solutions for
annotation.

The chapter provides answers to the following questions: How does IE extraction
from legal case texts work? What roles do NLP, UIMA type systems, and ML play?
How can the conceptual markup of legal documents be automated? What is man-
ual text annotation, what tools support it, how can it be managed, and how can its
reliability be evaluated? What kinds of argument-related information be extracted
from legal case texts? Can annotation be crowdsourced?

10.2. argument-related information in legal cases

Some work in extraction of information from case texts has focused on extracting
topics and subject matter. Programs have categorized legal cases by abstract West
legal categories (e.g., finance and banking, bankruptcy) in (Thompson, 2001) and
by general topics (e.g., exceptional services pension, retirement) in Gonçalves and
Quaresma (2005). Another system retrieved documents based on queries express-
ing cross-references between document subject matters (e.g., “Which orders talk
about abnormally annoying noise and make reference to decrees talking about
soundproofing?”) (Mimouni et al., 2014).

As early as 1991, researchers explored the use of argument schemes to assist in
representing cases for conceptual legal information retrieval (Dick and Hirst, 1991).
More recently, automatic semantic processing of argument-related information in
case decision texts has been undertaken for legal IR, including automatically extract-
ing case treatment history such as “affirmed” or “reversed in part” (Jackson et al.,
2003), offenses raised and legal principles applied from criminal cases to generate
summaries (Uyttendaele et al., 1998), case holdings (McCarty, 2007), and argument
schemes from the Araucaria corpus such as argument from example and argument
from cause to effect (Feng and Hirst, 2011). Other programs have, based on manually
annotated decisions, assigned rhetorical roles to case sentences, such as identifying
the case, establishing case facts, arguing the case, reporting case history, and stating
arguments, ratio decidendi, or final decisions (Saravanan and Ravindran, 2010), or
determined the role of a sentence in the case as describing the applicable law or the
facts (Hachey and Grover, 2006).

Sometimes, of course, topic-related and argument-related information overlap. In
Zhang et al. (2014) “legal issues” are mined from a case law database, each com-
prising a legal proposition or principle for which the case could be cited in an
argument. As noted in Section 7.7, a system semantically annotates legal issues in
case texts with a combination of ML and manual annotation. The result is a legal
issue library of standardized legal issues and links to case discussions of the issues
(Zhang, 2015).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 287 — #3

Extracting Argument-Related Information from Legal Case Texts 287

This chapter focuses on three projects that have extracted different types of
argument-related information from case texts using ML, NLP, and extraction rules:

1. Mochales and Moens’s system identified sentences that played a role in an
argument, labeled them as premises or conclusions, and extracted the struc-
ture of an argument from case texts (Moens et al., 2007; Mochales and Moens,
2011).

2. SMILE extracted substantive legal factors, the stereotypical patterns of fact that
strengthen or weaken a side’s legal claim (Ashley and Brüninghaus, 2009).

3. The LUIMA system extracts argument-related information about legal rules
cited in a case and their applications to facts (Grabmair et al., 2015).

Chapters 11 and 12 will discuss how this information extracted from legal cases
can improve conceptual legal information retrieval, enable AR, and perform other
cognitive computing tasks.

10.3. extracting legal argument claims

In Mochales’s and Moens’s pioneering work on legal argument mining, the infor-
mation extracted from legal texts comprised a basic unit of arguments, namely their
propositions or claims (Moens et al., 2007; Mochales and Moens, 2011). According
to the authors, “a claim is a proposition, an idea which is either true or false, put
by somebody as true” (Mochales and Moens, 2011, p. 1). This work is a forerunner
of the IBM Debater system, which, in an as yet nonlegal context, employs domain
independent techniques to “detect relevant claims” on a topic (Levy et al., 2014).

Arguments involve chains of reasoning, where claims are also used as premises for
deriving further claims. An argument’s final claim is called its conclusion. Specif-
ically, the authors defined argument as “a set of propositions, all of which are
premises except, at most, one, which is a conclusion[, and which] follows an argu-
mentation scheme” (Mochales and Moens, 2011, p. 5). As discussed in Section 5.2,
argumentation schemes are templates or blueprints for different kinds ofmore-or-less
domain-specific arguments, some of whichmay be implemented in a computational
model of argument.

10.3.1. Machine Learning to Classify Sentences as Propositions,
Premises, and Conclusions

The researchers applied ML automatically (1) to classify sentences as propositions
in an argument (or not) and (2) to classify argumentative propositions as premises or
conclusions.

They worked with two corpora. The first was the Araucaria corpus which com-
prised 641 documents that had been annotated according to a specific methodology
as a part of a project at the University of Dundee (UK) (Reed and Rowe, 2004;

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 288 — #4

288 Legal Text Analytics

Mochales and Moens, 2011, p. 8). It included five court reports, four parliamentary
records, as well as newspapers, magazine articles, and discussion boards. This cor-
pus comprised 3,798 sentences, including an equal number of sentences that were
argument propositions or nonargument propositions.

The second corpus, a set of 47 legal documents of the European Court of Human
Rights (ECHR), comprised 2,571 sentences. Three annotators spent more than a
year annotating the arguments in the ECHR corpus, with one judge to settle dis-
agreements. The annotators attained a good level of agreement on the labeling (75%
agreement according to Cohen’s kappa coefficient, a standardmeasure of agreement
defined in Section 10.6.1).

10.3.2. Text Representation

For purposes of extracting argumentation-related information,Mochales andMoens
represented sentences as feature vectors. As explained in Sections 7.5.2 and 8.5.1,
feature vectors and term vectors are widely used to represent texts, but here they
represent sentences for purposes of detecting arguments.

For learning to identify sentences as argument propositions, the sentences were
represented in terms of domain-general features based on information extracted from
the sentence texts, including:

– each word, pair of words, pairs and triples of successive words,
– POS including certain adverbs, verbs, andmodal auxiliaries (verbs that indicate

permission or obligation such as “may,” “must,” “shall,” and “should”),
– certain punctuation patterns,
– certain keywords indicating argumentation, for instance, “but,” “consequently,”

and “because of,”
– depth of parse trees and number of subclauses (both measures of sentence

complexity), and
– certain text statistics including sentence length, average word length, and

number of punctuation marks. (Mochales and Moens, 2011)

The feature values are typically represented as binary features signaling the presence
or absence of a feature in the sentence.

For classifying argumentative propositions as premises or conclusions, the authors
employed an enriched set of features to represent sentences, including:

– the sentence’s length relative to a threshold and position in the document
(divided into seven segments),

– main verb tense and type,
– previous and successive sentences’ categories,
– a preprocessing classification of the sentence as argumentative or not,
– the type of rhetorical patterns occurring in the sentence and surrounding

sentences: support, against, conclusion, other, or none,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 289 — #5

Extracting Argument-Related Information from Legal Case Texts 289

– the type of argumentative patterns in the sentence, for instance, “see,” “mutatis
mutandis,” “having reached this conclusion,” “by a majority,”

– whether the sentence cites an article of the law or includes a legal definition,
and

– the agent type of the sentence subject, for example, the applicant, the defen-
dant, the court, or other (Mochales and Moens, 2011).

10.3.3. Applying Statistical Learning Algorithms

Having represented the sentences as feature vectors, Mochales and Moens applied
three statistical learning algorithms commonly used in text classification:

1. Naïve Bayes classifier,
2. Maximum entropy classifier, and
3. SVM.

The first two algorithms were applied to predict if a sentence was an argumentative
proposition. Similar to systems presented in prior chapters, both algorithms predict
an instance of a category Y based on the values X of the features in the feature vector.
They calculate the probability of a classification Y given the feature values X and
select the most likely label Y.

In the process of calculating the probabilities, both algorithms estimate parame-
ters or weights associated with each of the features in the feature vector, but they do
so in different ways.

Naïve Bayes
Naïve Bayes uses an indirect approach to estimating the feature weights. It estimates
the probability of Y given X indirectly by estimating the probability of Y and the
probability of X given Y and then using a formula called Bayes Rule to compute the
probability of Y given X.

TheNaïve Bayes classifier employs a convenient shortcut that reduces the compu-
tational complexity of the calculations. It makes a simplifying assumption that the
individual features are conditionally independent of each other. This conditional
independence assumption limits the number of parameters that need to be estimated
when modeling the probability of X given Y (Mitchell, 2015, p. 3).

In fact, this assumption frequently is not satisfied, the reason why the algorithm
is called naïve. If some of the features are not independent, the naïve Bayes algo-
rithm may result in errors. For example, the two words in the phrase “Buenos Aires”
rarely appear separately. Even though they are not independent, Naïve Bayes will
add the evidence of each term in the phrase, in effect, double counting. Given this
phenomenon, it may be preferable to use a different technique that estimates the
parameters more directly from the data (Mitchell, 2015, p. 10).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 290 — #6

290 Legal Text Analytics

Maximum Entropy Classifier
A maximum entropy classifier in language processing, also known as multinomial
logistic regression, assigns a class to a document by learning what features from the
input are most useful for discriminating between the different classes. It computes a
probability from an exponential function of a weighted set of these observed features
(Jurafsky and Martin, 2015). It is based on the principle that when nothing else is
known, the probability distribution should be as uniform as possible, that is, it should
have maximum entropy (Nigam et al., 1999).

In the context of text classification, a document may be represented by a set of
words and the number of times each word appears in the document (see Section 8.3).
The documents in the training data all have labels assigned. The maximum entropy
classifier can estimate the conditional distribution of a class label. Given the labeled
training data, for each class it can estimate the expected value of these word counts,
that is, the weights of the features (Nigam et al., 1999).

For instance, suppose there are four classes of documents, including the “faculty”
class, and one is told that 40% of documents that have the word “professor” belong
to the “faculty” class. That information serves as a constraint. Without any other
information, if a document has the word “professor,” one would guess it has a 40%
chance of being a faculty document, and a 20% chance of being each of the other
classes. If the document does not have “professor,” one would guess that it has a
25% chance of being each of the classes. This would be a simple maximum entropy
model (Nigam et al., 1999).

The training data sets up many such constraints on the conditional distribution.
Each constraint corresponds to a characteristic of the training data that should also
be present in the distribution the algorithm learns. The algorithm applies an iterative
technique to formulate a text classifier function that matches all of these constraints
from the labeled data (Nigam et al., 1999). In effect, the model learns the weights
of the features that correspond to the constraints. Intuitively, it chooses weights that
make the classes of the training examples more likely in a process called conditional
maximum likelihood estimation (Jurafsky and Martin, 2015).

A maximum entropy classifier does not make any assumption that features are
independent. Unlike naïve Bayes, when it encounters the phrase “Buenos Aires,” the
use of the constraints leads it to discount the evidential weight and to avoid double
counting the evidence. As a result, one can use bigrams and phrases with maximum
entropy (Nigam et al., 1999). As it happened, in the experiment reported below, the
maximum entropy classifier produced better results than naïve Bayes.

Support Vector Machine
For the sentences in the ECHR corpus classified as propositions in an argument, the
authors applied a SVM to classify them as premises or conclusions.

As explained in Section 8.5.2 on applying ML to text, a SVM is a kind of statistical
ML algorithm that identifies, in the space of feature vectors, a hyperplane boundary

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 291 — #7

Extracting Argument-Related Information from Legal Case Texts 291

between positive and negative instances of a category or class (Noble, 2006). Here,
the vector space is the space of feature vectors representing the sentences in terms
of the enriched set of features mentioned above.

Results for Identifying Argumentative Propositions
In identifying argumentative propositions, Mochales and Moens achieved accura-
cies of 74% on the Araucaria corpus and 80% on the ECHR corpus. They appear
to have obtained the best results by combining “word couples selected by their
POS-tag, verbs and statistics on sentence length, average word length and number
of punctuation marks” (Moens et al., 2007). In determining whether argumenta-
tive propositions in the ECHR corpus were premises or conclusions, they attained
F1-measures of 68% for premises and 74% for conclusions (see Section 4.4.4).

The researchers examined 98 sentences that were misclassified as argumentative
or non-argumentative propositions. They determined that 21% of the errors could
have been classified correctly if the previous discourse content could be taken into
account. Another 47% of the errors involved textual cues that can indicate argu-
ments but turned out to be ambiguous. These included modal verbs like “should,”
the word “but,” and the adverb “more.” Some remaining errors occurred where
reasoning steps were left implicit or where CSK would be needed to detect the
argument.

10.3.4. Argument Grammar for Discourse Tree Structure

Finally, the authors experimented with whether a program could extract some of
the discourse structure of an argument directly from a document. They represented
argument discourse structure as a tree of argument triples. Each triple comprises a
root node to which a premise leaf node and a conclusion leaf node are attached
by support links. The root node of one argument triple can be attached to that of
another in a chain of reasoning.

They removed 10 of the ECHR cases from the evaluation and manually con-
structed a set of rules for identifying and linking triples and thus constructing an
argument’s discourse structure. This set of rules is a kind of grammar for detecting
argumentation structure and classifying propositions in the structure.

The authors evaluated the grammar by applying it to parse the texts of the remain-
ing ECHR documents and detecting their argumentation structures. The argument
trees output by the argument grammar were manually compared to the structures
identified by the human annotators in terms of whether all the argumentative infor-
mation is included, the individual arguments are well-formed, and the connections
between arguments are correct.

Using the grammar for parsing the texts from the ECHR corpus, the authors
obtained about 60% accuracy in detecting the argumentation structures. The

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 292 — #8

292 Legal Text Analytics

figure 10.1. Excerpt of argument tree structure extracted automatically from a case (see
Moens et al., 2007, Fig. 5)

structures maintained an F1-measure of about 70% in classifying premises and
conclusions.

Figure 10.1 illustrates an excerpt of the tree structure extracted automatically from
the text of a regulatory case by the argument grammar (Mochales and Moens, 2011,
p. 19). The Commission’s overall conclusion is at the top. It is supported by two
arguments, each represented by a conclusion followed by premises: two premises
support the first argument and three premises support the second.

Such automatically generated argument structures are useful. They can effectively
summarize the arguments in a complex legal document in terms of the main issues,
positions and arguments, and the supporting evidence. In order to determine if a
document would be relevant and useful in making a new argument in another sce-
nario, however, a program would need more information about what the premises
and conclusions mean, and about the kinds of argument schemes that are being
used.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 293 — #9

Extracting Argument-Related Information from Legal Case Texts 293

table 10.1. Some argument schemes annotated automatically (Feng and Hirst, 2011)

Argument Meaning Scheme-specific Best average
scheme features accuracy of

Argument (excerpts) classification

from: (%)

Example Case a has property F and also
property G. Therefore, generally,
if x has property F, then it also has
property G.

phrases including for
example, such as, for instance

90.6

Cause to
effect

Generally, if A occurs, then B
will occur.
In this case, A occurs.
Therefore, in this case, B will
occur.

phrases including result,
related to, lead to

70.4

Goal to
means

I have a goal G. Carrying out
action A is a means to realize G.
Therefore, I ought (practically
speaking) to carry out this
action A.

phrases including want, aim,
objective; four modal verbs:
should, could, must, need

90.8

Consequences If A is (is not) brought about,
good (bad) consequences will
(will not) plausibly occur.
Therefore, A should (should not)
be brought about.

counts of positive and negative
propositions in the conclusion
and premises

62.9

Verbal
classification

a has a property F. For all x,
if x has property F, then x can be
classified as having property G.
Therefore, a has property G.

maximal similarity between the
central word pairs extracted
from the conclusion and the
premise; counts of copula (e.g.,
an a is F), expletive (e.g.,
there are, it is), and negative
modifier (e.g., not an F)
dependency relations returned
by the parser

63.2

10.3.5. Identifying Instances of Argument Schemes

Building on the work of Mochales and Moens (2011) and Feng and Hirst (2011)
automatically identified instances of argument schemes in texts from the online
AraucariaDB corpus, which, as noted above, contains some legal cases. The
researchers assumed that argument components such as propositions and conclu-
sions had been annotated successfully using the above techniques. They focused on
the task of annotating five kinds of argument schemes, shown in Table 10.1.

The argument schemes in Table 10.1 are similar to those used in law. They
are all related to VJAP’s schemes modeling arguing from an analogous legal case
(see Section 5.7.3). The cited case is used as an example that shares a property with
the current problem, namely that a particular trade-off in underlying values will
result or be avoided if they are decided in the same way, that is, if they are both
classified as instances of a particular intermediate legal concept.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 294 — #10

294 Legal Text Analytics

In order to annotate argument schemes, Feng and Hirst (2011) identified sets of
general and scheme-specific text features. The general features include location of
the conclusion in the text and relative positions and length of premises and con-
clusion. Some of the scheme-specific features are shown in Table 10.1 including
characteristic phrases or linguistic constructions.

They employed a decision tree algorithm (Section 4.3.1) to perform the classifica-
tions based on these features, namely C4.5 (Quinlan, 2004) as implemented in the
Weka package (Machine Learning Group at the University of Waikato, 2015). The
last column in Table 10.1 shows a small portion of the results reported in Feng and
Hirst (2011, p. 992), specifically, the best average accuracy of classifying an argument
as an instance of the target scheme of interest or as other.

The authors attributed the lower performance for identifying arguments from con-
sequences and from verbal classification to the relatively small number of training
instances of these schemes and to the fact that they did not have as obvious cue
phrases or patterns as the other schemes (Feng andHirst, 2011, p. 993). In this respect,
it may prove easier for ML to classify legal argument schemes. The frequent cita-
tions of cases and statements of legal rules in legal opinion texts may offer more
obvious cues concerning argument schemes based on consequences illustrated in
an analogous case or on classifications in terms of a legal rule concept.

For a computer program to be able to reason with arguments about cases or pre-
dict outcomes, more kinds of information need to be extracted. Beside marking up
argumentative premises, conclusions, and schemes in legal case opinions, onewould
need to annotate substantive features such as factors that strengthen or weaken a legal
argument and that can be used to predict case outcomes (Section 4.5.2). Fortunately,
it is likely that programs can identify factors in case texts.

10.4. extracting argument-related legal factors

SMILE is a natural language interface to the IBP program described in
Section 4.5.2 (Ashley and Brüninghaus, 2009). It serves as a “bridge” between natu-
ral language descriptions of problems and IBP’s computational model for predicting
case outcomes.

SMILE learns how to identify legal factors in brief textual descriptions of prob-
lems based on a training set of example sentences describing factors. As illustrated
in Figure 10.2, one inputs a textual description of a problem involving trade secret
law. SMILE represents it as a list of factors and inputs the list to IBP, which in turn
predicts the outcome based on SMILE’s input and explains the prediction.

10.4.1. Three Representations for Learning from Text

SMILE employed a training set of manually classified case texts. These were not the
full texts of legal opinions, but squibs, brief narrative summaries of a case’s important

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 295 — #11

Extracting Argument-Related Information from Legal Case Texts 295

figure 10.2. Overview of SMILE and IBP (see Ashley and Brüninghaus, 2009)

facts and of the court’s holding, like those that first-year law students prepare in
briefing cases.

In fact, law students, who were hired specially for the task, were instructed to
include all facts that seemed important to the judge’s decision. A guide apprised the
squib writers about the 26 factors representing trade secret law problems. They were
encouraged to identify and include fact descriptions in the opinions related to any
applicable factors. In particular, they were asked to: (1) cut-and-paste fact descriptions
in the case opinions related to particular factors, (2) incorporate them seamlessly into
a readable narrative, and (3) insert delimiters into the narrative indicating the begin-
ning and ending of the sentences associated with each factor. A researcher reviewed
each squib for accuracy and reasonableness and provided feedback for revision.

In building SMILE, the researchers needed to address the important question
of what makes a good representation for learning from text. For instance, take the
sentence from a trade secret case that the reader has already seen in Section 1.4.4:
“Newlin copied some files from ICM and brought them with him to DTI.” This sen-
tence, an example of Factor F7, Brought Tools, needs to be represented as a training
instance from which a program can learn how to identify the factor.

The researchers employed three representations that incrementally take into
account more semantic and syntactic information (Ashley and Brüninghaus, 2009).

The first representation is the simplest, a BOW representation, introduced in Sec-
tion 7.5.2 on legal IR. The sentence is represented as a feature vector where the
features are simply the words in the sentence (see Sections 7.5.2 and 8.3). A BOW
representation of the above sentence is simply a list of the words in the sentence

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 296 — #12

296 Legal Text Analytics

in alpha order: “and brought copied dti files from him icm newlin some them
to with.”

The second representation, Roles-Replaced (RR), is a feature vector similar to
BOW but with an important difference. The features that are the names of the
parties and instances of the product-related information are replaced with more gen-
eral terms that identify their roles, like “plaintiff,” “defendant,” or “information.” In
RR, the above example of F7 is represented as: “and brought copied defendant him
information plaintiff some them to with.”

The third representation, Propositional Patterns or ProP, is one in which sen-
tences were parsed to identify “who did what.” Specifically, the parsing identifies
four syntactic relationships of interest: subject–verb, verb–object, verb–prepositional
phrase, and verb–adjective. Then, party and product names are replaced with roles as
in RR. Finally, synonyms are substituted for the nouns and verbs using a small ontol-
ogy. Thus, the above sentence example of F7 was represented as a feature vector in
terms of the following features in a kind of nested alpha order:

((defendant copy) (person copy))

((copy information))

((copy_from person) (copy_from plaintiff))

((defendant bring) (person bring))

((bring them))

((bring_to defendant) (bring_to person))

(bring_with him)). (Ashley and Brüninghaus, 2009)

As explained in detail in Section 7.5.2, a program can compare sentences rep-
resented as feature vectors in BOW, RR, or ProP to determine their similarity. It
computes the Euclidean distance between the end points of the vectors; the smaller
the distance, the nearer, and more similar, the sentences.

In learning a classifier for each factor, the researchers applied three ML algo-
rithms: a decision tree algorithm using C4.5 (Quinlan, 2004) (Section 4.3.1), Naïve
Bayes as implemented in Rainbow (McCallum, 2004) (Section 10.3.3), and a
k-nearest neighbor (k-NN) algorithm implemented in a program called Timbl
(Daelemans et al., 2004) (Section 4.2).

The flow of the system is outlined in Figure 10.2. First, all texts are broken into
sentences. The positive and negative instances for each factor Fi are collected. In
each training case, all of the sentences from which it could be reasonably inferred
that a legal factor applied in the case have been manually marked-up as positive
instances of that factor. All the rest of the sentences were treated as negative instances
of the factor. Then the sentences are represented as BOW, RR, or ProP to create a
vector space of instances.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 297 — #13

Extracting Argument-Related Information from Legal Case Texts 297

The first two ML algorithms, C4.5 and Naïve Bayes, learn a classifier for each
factor in a training phase. In a subsequent phase, the program applies each factor’s
classifier to all of a problem’s sentences represented as BOW, RR, or ProP.

The nearest neighbor algorithm works differently. In SMILE, the researchers
chose k= 1. That is, each new sentence of a problem was classified in the same
way as the one sentence most similar to it. Each problem sentence, represented as a
feature vector with BOW, RR, or ProP, is added to each factor’s vector space of posi-
tive and negative instances. The program finds the most similar sentence according
to above-mentioned Euclidean similarity metric and assigns its class, as a positive or
negative instance of the factor, to the new sentence. The program classifies the new
case text as containing all factors for which it had at least one sentence that was a
positive instance of the factor.

10.4.2. How Well Did SMILE Work?

In a LOO cross-validation experiment (see Section 4.4.3), the researchers deter-
mined that k-nearest neighbor with k= 1 worked better than the other two algorithms
and used it to test which representation worked best. The RR and ProP representa-
tions achieved F1-measures averaged across factors of 26% and 28%, respectively.
These F1-measures are low, but the RR and ProP representations each performed
better than BOW, achieving higher average F1-measures (Section 4.4.4) and the
difference was statistically significant. RR turned out better than ProP, but that dif-
ference was not significant. In other words, including background knowledge about
roles and shallow NLP to identify “who did what” led to better classification-based
text indexing (Ashley and Brüninghaus, 2009).

In order to assess the effect of SMILE’s assignments on IBP’s case-based predic-
tions, the researchers conducted a second experiment. They compared IBP’s case
outcome prediction results for cases whose factors SMILE had assigned to a case text
with those for the same cases but where the factors had been assigned by humans.
The inputs to IBPwere SMILE’s outputs for the squib descriptions of cases. They also
compared SMILE+IBP’s predictions to a baseline of flipping a biased coin, where
the probability that plaintiff wins equals the fraction of the number of cases plain-
tiff won over the number of cases in the collection. The accuracy of SMILE+IBP’s
predictions was 63%, lower than IBP’s 92%, but higher than that of the biased-coin
baseline, 49% (Ashley and Brüninghaus, 2009).

As far as we know, SMILE+IBP was the first AI & Law program to predict the
outcomes of legal cases input as texts. SMILE analyzed textual descriptions of legal
case facts and IBP predicted the outcome of the case using case-based reasoning
and a logical model of legal issues. In addition, IBP then explained its analysis
in terms of its hypothesis-testing approach. See Figure 4.6 for a sample of IBP’s
predictions.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 298 — #14

298 Legal Text Analytics

With advances that will be described in Chapter 11, an improved version of
the SMILE+IBP approach, combined with conceptual legal information retrieval,
could help humans predict outcomes of problems, assess predictions, and construct
arguments for and against the predictions.

10.4.3. Annotating Factor Components

In subsequent work, Wyner and Peters applied an annotation pipeline approach to
identify information concerning trade secret legal factors in the full texts of legal
decisions (Wyner and Peters, 2010, 2012). They developed a scheme for annotating
fine-grained factor components with the GATE text annotation environment. These
fine-grained components, sometimes called factoroids, comprised terms and phrases
employed in the descriptions of trade secret legal factors in CATO (Section 3.3.2).
The researchers augmented the list with synonyms of the terms drawn from Word-
Net,1 an online lexical database for English containing synonyms, definitions, and
usage examples that functions as a kind of thesaurus.

For example, for the legal factor, F1 Disclosure-In-Negotiations (D), they manu-
ally identified terms including:

plaintiff, disclose, product, information, negotiation, defendant, obtain, fair means,
show, lack of interest, maintain, secrecy, joint venture, licensing agreement, sale of
a business, acquire, knowledge, employment.

They expanded some of these concepts, such as “disclose” or “disclosure,” with
synonyms from WordNet:

announce, betray, break, bring out, communicate, confide, disclose, discover,
divulge, expose, give away, impart, inform, leak, let on, let out, make known, pass
on, reveal, tell, announcement, betrayal, communication, confidence, disclosure,
divulgance, exposure.

The combined lists served as a “gazetteer list” of related terms covered by a con-
cept and useful for annotating new documents (Wyner and Peters, 2010, p. 40). Using
GATE’s rule-based annotation language called JAPE (like UIMA’s RUTA language
in Section 10.5.3), Wyners and Peters developed rules for marking up sentences
according to the applicable concepts. When GATE encounters in a text words from
the gazetteer list, it triggers a corresponding rule that annotates the sentence with
the covering concept, for example, the type, “disclosure.”

After the basic concepts of trade secret legal factors were marked up, com-
pound rules annotated sentences in terms of more complex conceptual types such
as DisclosureInformation and, ultimately, as legal factors including Disclosure-
Information-Negotiation (Wyner and Peters, 2010, p. 41).

1 https://wordnet.princeton.edu/

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 299 — #15

Extracting Argument-Related Information from Legal Case Texts 299

10.5. extracting findings of fact and cited legal rules

The LUIMA system extracted from legal case texts argument-related information
about legal rules and their applications to facts (Grabmair et al., 2015). This was the
first step in an experiment to assess the hypothesis of the LUIMA project: by seman-
tically annotating case documents in terms of the roles propositions play in a legal
argument and retrieving them based on the annotations, a program can outperform
systems that rely on text matching and techniques for legal information retrieval.

This section describes how LUIMA uses rule-based and ML annotators to anno-
tate case documents with semantic information including a sentence’s roles. After
that, Chapter 11 on conceptual IR explains how LUIMA uses this information to
perform AR, that is, how LUIMA identifies and annotates semantic and argument-
related information, and uses it to improve legal information retrieval (Ashley and
Walker, 2013).

The work involves a subset of the V/IP Corpus and model of evidentiary legal
argument described in Section 5.8. As explained, the DLFmodels the roles of propo-
sitions in a fact-finder’s reasoning supporting his/her legal conclusions. For example,
a proposition’s role can be to state the legal rule for deciding an issue or to state a
finding of fact that supports a conclusion that a condition of the legal rule is satisfied
in a particular case.

10.5.1. Applying the LUIMA Type System

In the LUIMA project, the researchers applied their extended version of a UIMA
type system to the legal domain. As introduced in Chapter 1 and elaborated in
Section 6.8, a UIMA type system is a kind of ontology focused not only on the types
of concepts and relations important in the domain application but also on how they
are expressed in texts. LUIMA distinguishes between legal concepts and the different
ways in which such concepts are mentioned (Grabmair et al., 2015).

As explained in Section 6.8, in the hierarchical LUIMA type system, higher-level
types are composed from lower-level types. Specifically, a hierarchy of subsentence
types supports the sentence-level annotations at the top of the hierarchy.

As shown in Table 6.6, Term type annotations, such as PlaintiffTerm, IllnessTerm,
and VaccineTerm, are at the lowest level. The second level includes mention types,
for example, a VaccinationMention, such as “MMR vaccination.” Formulation types
comprise the third level, for instance the LegalStandardFormulation, “the plaintiff
bears the burden of showing that.” The highest level are the legal sentence types
illustrated in Table 6.7.

Three of these sentence-level annotation types will be in focus here:

1. LegalRuleSentence: states a legal rule in the abstract, without applying it to a
particular case’s facts.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 300 — #16

300 Legal Text Analytics

2. EvidenceBasedFindingSentence: reports a fact-finder’s finding on whether or
not evidence in a particular case proves that a rule condition or conclusion
has been satisfied.

3. CitationSentence: credits and refers to authoritative documents and sources,
such as court decisions (cases), statutes, regulations, government documents,
treaties, scholarly writing, or evidentiary documents.

Applying the LUIMA system’s classification of higher levels, including sentence-
level, depends on detecting the presence or absence of lower-level annotations
represented as binary features. For example, an annotation rule detects the Legal-
StandardFormulation, “the Plaintiff bears the burden of showing that,” and similar
sentences by detecting a chain of specified lower level annotations: (1) a Plaintiff-
Mention, (2) one of a class of expressions synonymous with “bear the burden,” and (3)
one of a class of verbs signaling evidence production (e.g., show, produce, establish,
etc.) (Grabmair et al., 2015).

10.5.2. Preparing Gold Standard Cases

For purposes of an initial evaluation of the LUIMA hypothesis, the researchers
selected 10 source cases from the V/IP Corpus introduced in Section 5.8. Referred
to as the gold standard cases, these 10 cases had been employed in a previous study:
Cusati, Casey, Werderitsh, Stewart, Roper, Walton, Thomas, Meyers, Sawyer, and
Wolfe (Ashley and Walker, 2013).2 The cases all dealt with the issue of proving, for
purposes of the NVICP, that the vaccination caused the injury complained of by the
petitioner, the injured party, or its representative. Petitioners won five of the cases;
the respondent government won the remaining five.

The researchers adopted a systematic process for annotating the instances of
LegalRuleSentences, EvidenceBasedFindingSentences, and CitationSentences in
the gold standard case examples. The Research Laboratory for Law, Logic and Tech-
nology at Hofstra Law (LLT Lab) performed the annotations. Every effort was made

2 Cusati v. Secretary of Health and Human Services, No. 99-0492V (Office of Special Masters, United
States Court of Federal Claims, September 22, 2005);Casey v. Secretary of Health andHuman Services,
Office of Special Masters, No. 97-612V, December 12, 2005; Werderitsh v. Secretary of the Department
of Health and Human Services, Office of Special Masters, No. 99-319V, May 26, 2006; Stewart v. Secre-
tary of the Department of Health and Human Services, Office of Special Masters, No. 06-287V, March
19, 2007; Roper v. Secretary of Health and Human Services, No. 00-407V (Office of Special Masters,
United States Court of Federal Claims, December 9, 2005); Walton v. Secretary of the Department
of Health and Human Services, No. 04-503V (Office of Special Masters, United States Court of Fed-
eral Claims, April 30, 2007); Thomas v. Secretary of the Department of Health and Human Services,
No. 01-645V (Office of Special Masters, United States Court of Federal Claims, January 23, 2007);
Meyers v. Secretary of the Department of Health and Human Services , No. 04-1771V (Office of Special
Masters, United States Court of Federal Claims, May 22, 2006); Sawyer v. Secretary of the Depart-
ment of Health and Human Services, No. 03-2524V (Office of Special Masters, United States Court of
Federal Claims, June 22, 2006); Wolfe v. Secretary of Health and Human Services, Office of Special
Masters, No. 05-0878V, November 09, 2006.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 301 — #17

Extracting Argument-Related Information from Legal Case Texts 301

to ensure that the process was reliable and accurate (Walker and Vazirova, 2014).
A student researcher, trained in law and in the sentence-level type system, initially
marked up each decision. A similarly trained law student then reviewed the initial
annotations, any differences between their annotations were noted, and the first and
second reviewers resolved all of those differences. Finally, a law professor (Walker)
reviewed and certified them as the gold standard annotations. As described in Sec-
tion 10.6.2, the LLT Lab utilizes and refines protocols to provide training and quality
assurance (Walker et al., 2011).

10.5.3. LUIMA-Annotate

Of the LUIMA system’s three modules, described in the next chapter, LUIMA-
Annotate, depicted in Figure 10.3, is the module that annotates the texts of the cases
employing two methods:

1. Rule-based subsentence annotation, in which a human manually constructs a
grammar of annotation rules based, usually, on inspection of some examples.

2. ML, in which anML algorithm automatically constructs, from a training set of
human-annotated examples, a model that distinguishes positive and negative
examples. This is similar to the predictive coding of Section 8.4.2.

When a document, say, from a CLIR service, is entered (at the left of
Figure 10.3), the system must identify where one sentence ends and another begins.
Sentence splitting occurs as an initial step in the Rule-BasedMention&Formulation
Annotators.

figure 10.3. Schematic of LUIMA-Annotate (Grabmair et al., 2015)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 302 — #18

302 Legal Text Analytics

Sentence splitting is an easy task for human readers but not necessarily straightfor-
ward for computers. Legal documents’ ambiguous punctuation presents challenges
for automated sentence splitters. For example, abbreviations and citations in legal
documents employ periods (“.”) in ways other than to indicate the end of a sen-
tence. A sentence splitter may interpret them erroneously as ending a sentence, and
this will make subsequent ML less effective. The Lingpipe sentence splitter handles
common phenomena related to the use of periods, for example, “Inc.” for incorpo-
rated (Alias-i, 2008); the researchers added a module to handle law-specific uses of
periods such as “v.” for versus. Evaluating the module’s effectiveness has been left
for future work (Grabmair et al., 2015).

LUIMA-Annotate also marks up some presuppositional information. Presuppo-
sitional information includes factual and linguistic concepts and mentions related
specifically to the regulated domain, whether it be vaccine injury, trade secret
misappropriation, or some other domain (Ashley and Walker, 2013).

Specifically, LUIMA-Annotate identifies in the case texts such entities as:

– Terms: VaccineTerm, IllnessTerm, CausationTerm.
– Mentions: VaccineMention, which includes a VaccineAcronym coupled with

a VaccineTerm (“MMR Vaccine”), VaccinationEventMention, Causation-
Mention.

– Normalizations: VmNormalization, ImNormalization (that is, the normalized
name of vaccine or illness mentioned in a sentence).

Since vaccines or illnesses may be expressed in a multitude of variations,
acronyms, and abbreviations, standardized expressions or normalizations are
included as part of the process of stemming and lemmatization (see Sections 8.3
and 9.3.2). Thus, the fact that a sentence is about “MMR vaccine” is represented in
documents or queries in terms of a VaccineMention or VaccinationEvent Mention
term, a normalized name for the vaccine mentioned, or the text of the mention, for
example:

about:VaccineMention or about:VaccinationEventMention or vmNormaliza-
tion:#mmr or content:“MMR vaccine.” (Che et al., 2015)

In order to annotate citations, the researchers developed regular expressions
(regex), character sequences that define search patterns for string matching pat-
terns of different types of citations in legal documents including prior cases, statutory
provisions, case files, and general references (Che et al., 2015).

Manually Constructed Subsentence Annotation Rules
The sentences are automatically annotated in terms of mentions and subsentence
types. This annotation is performed by rules that have been programmed by hand
in UIMA RUTA, a rule language designed especially for text matching to facilitate
the rapid development of UIMA annotators.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 303 — #19

Extracting Argument-Related Information from Legal Case Texts 303

One of the researchers who is also trained in law (Grabmair) developed some of
the annotation rules based on intuitions about what would be useful across legal
domains. He developed additional rules based on parts of three of the gold standard
V/IP cases (Roper, Cusati, and Thomas). He manually extracted terms, mentions,
and formulations from the three case texts, and constructed RUTA rules to extract
them automatically. Then, he attempted to expand the scope of the rules to antic-
ipate variations in wording and structure based on his intuitions. In constructing
rules from the three cases, he did not consult the sentence-level annotations of
the three documents prepared by the annotators of the gold standard cases. These
precautions are taken so as not to “contaminate” the data or model by examin-
ing data during system creation or training that will later be used in the evaluation
(Grabmair et al., 2015).

As an example of a manually constructed rule of subsentence annotation, here is
the rule (in RUTA) for annotating a LegalStandardFormulation:

IF (PlaintiffMention MustRelationTerm “also”? (“prove” | “show” | “establish”))
THEN
MARK(LegalStandardFormulation)

This rule means:

IF: the expression includes an instance of mentioning the plaintiff, an instance of a
term expressing an obligation, an optional “also” and one of three alternative verbs
THEN: annotate the expression as a LegalStandardFormulation.

For example, if the rule detects such a plaintiff mention, a term like “must,” an
“also” and, say, “show,” it will annotate the sentence as expressing a legal standard.

At the current stage of LUIMA’s development, the type system currently consists
of 8 term types, 14 mention types, and 13 formulation types. The rule base com-
prises 7 dictionary annotators (including vaccine abbreviations (Centers for Disease
Control and Prevention, 2015)) and 49 rules for entities like StandardLegalFormu-
lation, VaccineMention, ProofStandardMention, ProofStandardSatisfiedMention,
and ProofStandardNotSatisfiedMention. Not all of these rules and types have been
directly involved in the annotation process for the initial experiment, discussed below
(Grabmair et al., 2015).

Machine Learned Sentence Annotators
LUIMA-Annotate employed ML for sentence annotations. The three classifications
to be learned included whether a sentence was an instance of a (1) LegalRuleSen-
tence, (2) EvidenceBasedFindingSentence, or (3) neither, that is “NotAnnotated,”
which was treated as a separate label for technical purposes. The dataset comprised
5,909 sentences, of which 82 were instances of EvidenceBasedFindingSentences,
227 were instances of LegalRuleSentences, and the remainder were NotAnnotated.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 304 — #20

304 Legal Text Analytics

For purposes of ML, the texts of sentences were represented as feature vec-
tors much as in the West History Project (Section 8.5.1) or like the Mochales and
Moens work (Section 10.3) and SMILE (Section 10.4). In LUIMA, the feature vec-
tors include tf/idf frequency information (see Section 6.4) for all possible word
sequences up to four words in length contained in the sentence.

The researchers also tried enriching this vector representation of a sentence by
adding features related to selected LUIMA subsentence types. Each added feature
is a binary variable indicating if the sentence contains an expression that has been
annotated as an instance of the particular type.

Here is an example of how a sample sentence has been represented for pur-
poses of ML. The sentence is “Dr. Winston concluded that petitioner was suf-
fering from gastroparesis, a disorder of delayed stomach emptying.” Its feature
vector includes tf/idf frequency information of all possible one-element (“Dr.”),
two-element (“Dr. Winston”), three-element (“Dr. Winston concluded”), and four-
element sequences (“Dr. Winston concluded that”). Since the italicized terms are
annotated as PlaintiffTerm and IllnessTerm, respectively, the vector also includes
values of 1 for each of PlaintiffTerm and IllnessTerm (Grabmair et al., 2015).

This sentence from the Roper decision, one of the gold standard cases, was manu-
ally annotated as an EvidenceSentence, not as an EvidenceBasedFindingSentence,
because it reported a conclusion, not of the Special Master, but of Dr. Winston, an
expert witness. As such, it would be treated as NotAnnotated for purposes of this ML
exercise, in which the three classifiers did not include EvidenceSentences (a task for
future work).

As shown at the bottom left of Figure 10.3, the Roper decision and the other
gold standard cases were manually annotated for the three sentence types, Legal-
RuleSentence, EvidenceBasedFindingSentence, and NotAnnotated, and input to
LUIMA-Annotate. After subsentence mention and formulation annotation rules
were applied, the cases were treated as data for training the Sentence Classifier
(Grabmair et al., 2015).

10.5.4. Evaluating LUIMA-Annotate

The researchers evaluated how well LUIMA-Annotate performed. In particular, the
experiment tested how well it assigned two sentence-level annotations, LegalRule-
Sentence and EvidenceBasedFindingSentence, to 10 gold standard cases.

The experiment was run as a LOO cross validation (see Section 4.4.3). In other
words, there were 10 runs, one run for each gold standard case. In each run, a dif-
ferent annotated gold standard document’s sentences served as the test set; the other
nine documents’ sentences were used as training data. Annotated sentences served
as positive examples of their annotations; unannotated sentences were negative
examples.

Values for four measures, precision, recall, accuracy, and F1-measure (defined in
Section 4.4.4), were computed for every run and averaged (see Table 10.2). Three

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 305 — #21

Extracting Argument-Related Information from Legal Case Texts 305

table 10.2. Sentence classification performance measurements (best values printed in
boldface) (Grabmair et al., 2015)

ML Algorithm+ Accuracy Precision Recall Macro–F
additional feature

Naive Bayes 0.88 0.15 0.75 0.14
Naive Bayes+Type 0.89 0.16 0.75 0.15
Decision Tree 0.97 0.53 0.28 0.23
Decision Tree+Type 0.97 0.53 0.29 0.23
Log. Regression 0.96 0.66 0.38 0.31
Log. Regression+Type 0.96 0.66 0.38 0.31

ML algorithms, naïve Bayes (Section 10.3.3), logistic regression (Section 10.3.3),
and decision trees (Section 4.3.1), were applied (using the Stanford Parser (Finkel
et al., 2003-2014), and the Weka package, a repository of data-mining software tools
(Machine Learning Group at the University of Waikato, 2015)).

Since logistic regression worked best of the three ML algorithms, it was selected
for sentence-level annotation of a larger pool of other documents in the main system
pipeline (as described in Section 11.4) (Grabmair et al., 2015).

The researchers also tested whether the addition of subsentence types to n-grams
in the sentence representation improved performance, for example, the values of 1
for PlaintiffTerm and IllnessTerm in the above example. The additional features did
not improve performance. Compare, for instance, Log. Regression and Log. Regres-
sion + Type in Table 10.2. Probably the majority of rule annotator patterns such as
LegalStandardFormulation is about the same length as a four element n-gram, so
their contribution was minimal (Grabmair et al., 2015).

As discussed in Chapter 11, LUIMA annotations can improve legal information
retrieval.

10.6. annotation of training data

Efforts to extract argument-related information from case texts depend on develop-
ing high-quality training sets. For this purpose, it will become increasingly important
to create sets of manually annotated documents to use as a gold standard. The man-
ually annotated documents can be used as data both for training and assessing the
automated annotators.

Given the size of most corpora, humans will still need to mark up large num-
bers of documents even though only a fraction of the corpus needs to be annotated
manually.

Ideally, there will be enough annotated data to reserve some as an untouched
test set with which to assess the ML model trained on the remainder. If not, the
separation between training and test sets can be enforced via a LOO or k-fold cross
validation.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 306 — #22

306 Legal Text Analytics

Aside from the sheer number of annotated documents required for a conclusive
experiment or stable system, the annotations also need to be of sufficient qual-
ity. Obtaining good manual annotations requires assigning each text to multiple
humans to annotate independently and comparing their annotations to see the
extent to which they agree, that is, to measure the reliability of their annotations. In
instances where the annotators differ, one can either account for the disagreement
in the design of the experiment or resolve the conflict according to some method. If
humans cannot agree on the annotations, for instance, if the meaning of the label
is too ambiguous, then a ML program will not be able to learn how to apply the
label, either. In this sense, human annotator reliability imposes an upper limit on
the success of automated ML techniques.

A computer-supported environment can support teams of people in marking up
texts. It implements a systematic procedure to guide and coordinate the annotators’
efforts and monitors their reliability.

10.6.1. Annotation in IBM Debater

The IBMDebater teamhas developed a systematic approach tomanually annotating
training sets so that ML can extract information from texts (Levy et al., 2014).

As mentioned in Chapter 1, Debater extracts argument claims pro and con a topic
from Wikipedia articles and the supporting evidence. More specifically, it detects
context-dependent claims (CDC), general, concise statements that directly support
or contest the given topic. It also detects context-dependent evidence (CDE), a text
segment that directly supports a CDC in the context of a given topic (Aharoni et al.,
2014a). In detecting claims, Debater undertakes a task similar to that of Mochales
and Moens (2011), but not yet with legal texts.

Given a topic and relevant articles, a sentence component selects the 200 best
sentences. A boundaries component delimits the candidate claim in each sentence.
Using sentence and boundary scores, a ranking component then selects the 50 best
candidate CDCs. Like LUIMA, the Debater project employs ML but Debater does
so at each of the three steps: sentence selection, setting boundaries, and ranking
candidates.

Debater’sMLdepends on human annotators’ ability to performhigh-quality anno-
tation of a training set of documents. The annotators are asked to label text fragments
as CDCs if and only if they satisfy the following constraints. The text fragment
should:

– Strength: Express strong content that directly supports/contests the topic.
– Generality: Express general content that deals with a relatively broad idea.
– Phrasing: Make a grammatically correct and semantically coherent statement.
– Text spirit: Keep the spirit of the original text.
– Topic unity: Deal with one topic, or at most two related topics (Aharoni et al.,

2014a).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 307 — #23

Extracting Argument-Related Information from Legal Case Texts 307

The Debater team has developed a systematic way to organize the human anno-
tation effort to maximize reliability. As noted, reliability in annotation refers to the
level of agreement of independent (usually) human coders in assigning a label to
the same piece of text.

A standard measure of labelers’ agreement is Cohen’s kappa (κ) coefficient
(Cohen, 1960). The Cohen’s kappa statistic is a value between 0 and 1 that measures
the agreement actually observed among raters (P) less the agreement that would be
expected if it were left strictly to chance (Pe) (see Breaux, 2009). It is expressed by
the formula:

κ=(P− Pe)/(1− Pe) (10.1)

The human coders, who were primarily graduate students, were paid for their
work. They used an online annotation environment that enabled the teammanagers
to monitor the labelers’ performance for efficiency and accuracy of coding relative to
that of their peer labelers. Team managers replaced inefficient or inaccurate coders
as necessary.

Given a debate topic, five human labelers searched Wikipedia independently for
articles they believe contain CDCs. Five labelers then read each of the selected
articles. Working independently they detected 1,491 candidate CDCs. Five labelers
then examined each of the candidate CDCs, independently deciding to confirm or
reject the candidate. Candidate CDCs were accepted only if confirmed by at least
three labelers.

TheDebater team adapted themulti-rater agreementmeasure to deal with the fact
that no two labelers work on all of the same tasks. They took the average measure of
agreement over all of pairs of annotators for each pair who worked together on 100
or more CDCs/CDEs (Aharoni et al., 2014a, p. 67).

The team reported the following results. For 32 topics, 326 Wikipedia articles were
labeled, yielding 976 CDCs. On average, the labeling process yielded 30 CDCs
per Topic. (On average, only 2 out of 100 sentences include a CDC.) The average
kappa agreement between pairs of labelers, a measure of the reliability of the human
annotators, was 0.39. The average kappa for CDEs was 0.4. This does not suggest a
high level of agreement. As noted, in natural language applications of ML, the level
of human coder reliability is an upper bound on the performance of the machine-
learned classifier.

Nevertheless, the levels of agreement achieved by the Debater team were remark-
able given the complexity of the labeling task and the ill-definedness of the standards
defining the labels, namely CDC and CDE. In particular, three of the above label-
ing criteria, namely strength, generality, and text spirit, are somewhat subjective. The
systematic annotation process helped to ensure that the resulting CDCs correspond
to claims naturally usable in discussing the topic (Aharoni et al., 2014a).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 308 — #24

308 Legal Text Analytics

10.6.2. Annotation Protocols

In annotating LUIMA sentence types according to the DLF, Walker’s approach at
Hofstra’s LLT Lab (see Sections 5.8, 6.8, and 10.5.2) is to develop and refine protocols
at the same time that researchers annotate gold standard documents (Walker, 2011;
Walker and Vazirova, 2014).

Protocols provide criteria and examples that specify linguistic or logical cues for
human annotators to use in making annotations. They are developed empirically, as
new documents are marked up, so that they will include linguistic variations discov-
ered during the process and provide guidance for unusual patterns. They are useful
both for training annotators and quality assurance. Finished protocols also provide
refined definitions for the types, to the extent that they specify their proper use. They
also provide insights into the construction of rule-based programming for automatic
annotators.

10.6.3. Computer-Supported Annotation Environments

IBM’s Debater annotation environment and process are as yet not available to
outsiders. IBM’s BlueMix services, described in Chapter 1, provide support for
annotation, although subject to license. Thus, alternative open-source annotation
environments are important.

The UIMA comes equipped with a developer’s toolbox software including a com-
plex annotation interface. Figure 10.4 shows the UIMA annotation environment
equipped for annotating the nine LUIMA sentence types discussed above. Those
annotations were performed by law students under the supervision of a computer-
literate law professor with occasional technical assistance from a competent graduate

figure 10.4. LUIMA annotation environment

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 309 — #25

Extracting Argument-Related Information from Legal Case Texts 309

student. Presumably, as the importance of text annotation environments grows, even
more user-friendly interfaces compatible with UIMA or any successor framework
will be developed.

The GATE annotation environment, a text processing pipeline architecture and
alternative to UIMA, was employed in topic labeling in connection with Debater
(Aharoni et al., 2014a). GATE Teamware, a web-based tool, supports the roles of
annotators, editors, andmanagers in large-scale, multi-annotator projects. It prepares
texts for manual annotation by marking up terms of lower-level types using a core
type system of linguistic metadata. Expert editors can use Teamware to supervise
nonspecialist annotators and to curate annotated documents. It maintains statistics
about the annotation process tasks such as the amount of time annotators spend per
document, the percentage of documents they complete, and other measures useful
in implementing the kind of systematic process employed in IBM Debater.

Law student and attorney volunteers used GATE Teamware to annotate trade
secret cases in terms of factors and factor components (Section 10.4.3) (Wyner
and Peters, 2010, 2012). Figure 10.5 illustrates the markup of a case excerpt in the
Teamware environment. The geographically dispersed annotators worked remotely
via the Internet. The tool does not require local installation and stores data in a
central repository.

Significantly, UIMA and GATE are interoperable, although it remains to be seen
how effectively GATE Teamware and UIMA can be joined.

WebAnno, another browser-based tool, also supports managing multiple anno-
tators, monitoring inter-annotator agreement, and curating data (Yimam et al.,
2013). The user interface is well-organized, uncluttered, and relatively easy to use.
Figure 10.6 illustrates the markup of trade secret factors in the Mason case
(Figure 3.2) by a law student performed in an ongoing project using the WebAnno
environment via a web browser. The integration of the labels and text helps to make

figure 10.5. Annotation with GATE Teamware of factors and components in a trade
secret case (Wyner and Peters, 2010)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C10” — 2017/5/27 — 11:56 — page 310 — #26

310 Legal Text Analytics

figure 10.6. WebAnno annotation of trade secret factors in theMason case (see Yimam
et al., 2013)

the interface more intelligible to nontechnical personnel. Walker and the law stu-
dents in Hofstra’s LLT Lab are using WebAnno to markup Veteran disability cases
in terms of the DLF and LUIMA sentence types (see Sections 5.8, 6.8, and 10.5.2).

WebAnno has been designed to connect easily to crowdsourcing platforms so that
simpler annotation tasks could be handled by large numbers of unskilled annotators
(Yimam et al., 2013). Some advantages and challenges of crowdsourced annotation
are discussed in Section 12.5.2.

One of the main reasons for extracting information from case texts is to improve
legal information retrieval, the topic of the next chapter.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.010
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:25:58, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.010
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 311 — #1

part iii

Connecting Computational Reasoning Models and
Legal Texts

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:13:42, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 312 — #2

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:13:42, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 313 — #3

11

Conceptual Legal Information Retrieval for
Cognitive Computing

11.1. introduction

The LUIMA architecture, described in this chapter, takes Part II’s techniques for
automating conceptual markup of documents and for extracting information from
legal case texts and integrates them into a prototype system for conceptual legal infor-
mation retrieval. The system comprises modules for automatic subsentence level
annotation, ML-based sentence annotation, basic retrieval using a full-text informa-
tion retrieval system, and a ML-based reranking of the retrieved documents. The
chapter explains how to evaluate such a system objectively and how to assess any
contribution it makes to the full-text legal information system.

In particular, the chapter presents evidence supporting the LUIMA hypothesis,
set forth in Section 10.5, that AR is feasible. By semantically annotating documents
with argument role information and retrieving them based on the annotations, one
can outperform current systems that rely on text matching and current techniques
for legal information retrieval (Grabmair et al., 2015).

For example, as introduced in Section 6.8 and elaborated here in more detail, an
attorney seeking cases on whether hepatitis B vaccine can cause multiple sclerosis
or MS, may have two different questions in mind. He may want to know what the
relevant legal rule is, as in (Q1) “What is the rule for establishing causation between
a vaccine and an injury?” Alternatively, the attorney may seek cases applying the
rule given particular facts, as in (Q2) “Have there been cases where it was held that
hepatitis B vaccine can cause MS?” Depending on the user’s reason underlying the
query, different cases would bemore responsive. For instance, consider the following
sentences from the Werderitsh1 decision:

S1: In Althen, the Federal Circuit quoted its opinion in Grant v. Secretary of HHS,
956 F. 2d 1144, 1148 (Fed. Cir. 1992): A persuasive medical theory is demonstrated

1 Werderitsh v. Secretary of the Department of Health and Human Services, Office of Special Masters,
No. 99-319V, May 26, 2006.

313
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 314 — #4

314 Connecting Computational Reasoning Models and Legal Texts

by “proof of a logical sequence of cause and effect showing that the vaccination was
the reason for the injury[,]” the logical sequence being supported by “reputable
medical or scientific explanation[,]” i.e., “evidence in the form of scientific studies
or expert medical testimony[.]”

S2: “The undersigned holds that hepatitis B vaccine caused or significantly aggra-
vated petitioner’s MS.”

S3: “The undersigned concludes that the medical theory causally connecting the
vaccinations and petitioner’s injury is that Mrs. Werderitsh, who is genetically pre-
disposed to developing MS, was exposed to the environmental antigen of two
hepatitis B vaccinations, producing inflammation, self antigens, and a sufficient
number of T-cells to have an autoimmune reaction later diagnosed as MS.”

All three deal with vaccines causing injuries, but sentences that satisfy one type of
query do not necessarily satisfy the other. Sentences that play the role of stating the
rule of causationwill bemore relevant to the first query; those that state a judge’s find-
ings of facts involving the vaccine’s causing a particular injury will be more relevant
to the latter.

In this example, S1 is more responsive to Q1; it states a legal rule for establish-
ing causation between a vaccine and a subsequent injury. Given Q1, in order to
recognize S1 as more relevant, a system would need to go beyond just matching
words. It must recognize the concepts of a legal rule, namely vaccinations, causa-
tion, and injury. In S1, the vaccination is said to be “the reason for” the injury; a
system would need to recognize that as another way of referring to, or mentioning,
the concept of causation. Also, S1 mentions demonstrating a medical theory “by
proof of a logical sequence of cause and effect.” In the absence of a specific mention
of “rule” or “standard,” the system would need to recognize this formulation and the
Court of Appeals citations as indicating that the sentence states a legal rule or stan-
dard. Although S1 explicitly mentions “vaccination” and “injury,” a system would
also need to recognize these concepts in mentions of “immunization” and “adverse
medical condition,” which mean the same thing and which a court might have used
to paraphrase the requirement. S2 and S3, on the other hand, are responsive to Q2
in that they both refer to “hepatitis B vaccine,” “cause,” and “MS.” They both report
holdings or conclusions of the SpecialMaster concerning the application of the legal
rule to facts involving hepatitis B causing MS.

Currently, the LUIMA system can distinguish between sentences that present the
rule and sentences that state findings of fact, that is, it can distinguish between S1
and S2 or S3. This chapter explains how the researchers integrated the LUIMA anno-
tation approach, described in Section 10.5.3, with an information retrieval system
and used this kind of argument-related information, extracted from the texts of cases
retrieved by a legal IR system, to rerank the cases in a manner that improved the
quality of the retrieval.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 315 — #5

Conceptual Legal Information Retrieval for Cognitive Computing 315

The chapter also explores how to extend the LUIMA type system to enable a range
of conceptual queries not possible with current legal information systems. It discusses
techniques and some remaining challenges for annotating documents in terms of
the extended system of types. The chapter concludes with a discussion of alternative
network-based techniques for realizing the promise of conceptual legal information
retrieval.

Questions answered in this chapter include: What is AR and how can it improve
legal information retrieval? Why integrate a text annotation pipeline and an infor-
mation retrieval system, and how can they be integrated? What roles does ML play
in the prototype for conceptual legal information retrieval? How close are we to
achieving robust conceptual legal information retrieval?

11.2. state of the art in conceptual legal ir

Mainstream legal informational retrieval systems like LexisNexis and WN have
already achieved a measure of conceptual legal information retrieval (see
Section 7.7). LexisNexis provides a conceptual entree into the cases based on a net-
work of “legal issues” mined from a case law database. Each issue corresponds to
a proposition for which the case can be cited. WN’s sophisticated reranking func-
tion takes into account conceptual information based on annotations and citation
networks generated by experts.

Both legal IR providers report using ML for improving relevance assessment,
from automatically extracted case treatment histories (Section 8.5.3) to learning
legal topic-related feature weights for reranking (Section 7.7) to distinguishing fact
passages from legal discussions (Section 8.6).

AI & Law researchers have tried a variety of approaches to apply argument-related
information, automatically extracted from cases as described in Chapter 10, in order
to improve legal IR.

Some of the work addresses conceptually indexing the cases or generating
argument-focused summaries. For example, researchers applied the automatically
extracted offenses raised and legal principles applied in criminal cases for indexing
the cases and generating focused summaries (Uyttendaele et al., 1998). A program
applied the rhetorical roles automatically assigned to case sentences based on man-
ually annotated decisions in Saravanan and Ravindran (2010) to create structured
head notes summarizing aspects of the cases.

Other work focuses more directly on using the argument-related information for
retrieval. That was the goal of Dick and Hirst (1991) in using an argument scheme
to represent cases. The system in Mimouni et al. (2014) retrieved documents based
on queries containing conceptual descriptors and cross-references between docu-
ments. In a nonlegal context, the IBM Debater system employed the topic-relevant
claims it detected to select and rank themost relevant articles with which to construct
arguments (Levy et al., 2014).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 316 — #6

316 Connecting Computational Reasoning Models and Legal Texts

11.3. luima architecture

In order to employ argument-related information in legal information retrieval, the
architecture of the LUIMA system, illustrated in Figure 11.1, links the text annota-
tion pipeline LUIMA-Annotate with an information retrieval system, comprising two
components, LUIMA-Search and LUIMA-Rerank.

LUIMA-Search consists of a search engine and case database. Given a query, it
retrieves and ranks the most responsive documents and passes them along to the next
component. LUIMA-Rerank reorders the documents in terms of relevance based
on a model learned from true rankings in the training set and semantic features
extracted from the query and search engine ranking. The evaluation described below
compares the reranked list of documents with that of a CLIR system.

11.3.1. LUIMA-Search

Consider how a CLIR system, like those discussed in Section 7.4, would deal with
the following query:

finding or conclusion that Hepatitis B vaccine can cause multiple sclerosis or MS.

Like Q2 in the Introduction (Section 11.1), this is a query for which sentences S2
and S3 would be relevant. In the experiment described below, it was 1 of 11 baseline
queries given to the CLIR system, namely Q9 in Table 11.1.

An exclusively text-based search engine treats words like “finding” and “con-
clusion” as additional (and very common) keywords. It does not understand that
the query means, in effect, “Retrieve all sentences containing a finding or con-
clusion that a Hepatitis B vaccination causes multiple sclerosis or MS.” Even if a
CLIR understood the query in the intended sense, it could not adequately address
it because it does not know which sentences in the cases in its database are a court’s
findings or conclusions.

A legal IR system should be able to interpret queries in the way humans intend
them, but there is as yet no general way to accomplish this feat. LUIMA-Search is
a step toward enabling a legal IR system to do so. In effect, it interprets the words
as legal concepts and the query as specifying constraints about the targeted roles of
similar sentences in the sought-for case documents.

Figure 11.2 (top) shows the LUIMA-Search version of the above query. It includes
not only the targeted text but also concept mentions and argument role information.
It specifies the targeted role that some similar sentences in the cases to be retrieved
should play, for instance, as a sentence stating a legal rule or, here, as one reporting
an evidence-based finding of fact (Grabmair et al., 2015). This condition is speci-
fied by “type: EvidenceBasedFindingSentence.” Other conditions include various
constraints on what the sentence is about, as specified by mention types such as
VaccineMention, VaccinationEventMention, CausationMention, or IllnessMen-
tion, or as field contents matching specified tokens including “Hepatitis B vaccine,”

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C
11”

—
2017/5/27

—
12:02

—
page

317
—

#7

figure 11.1. LUIMA pipeline architecture (Grabmair et al., 2015)

317

of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781316761380.011

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Florida, on 03 N
ov 2017 at 09:27:27, subject to the Cam

bridge Core term
s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C
11”

—
2017/5/27

—
12:02

—
page

318
—

#8

table 11.1. Eleven queries submitted to CLIR system (Grabmair et al., 2015)

Query Source case name (date)
Winner [Althen 1 issue]

#Cases returned
by CLIR system

Cases expert
deemed relevant
in CLIR system’s
top 30

Source case rank in
CLIR system’s top
top 30

Q1 Legal rule about vaccines causing injury NA 157 25/30 NA
Q2 Finding or conclusion that MMR

vaccine causes intractable seizure disorder
Cusati (9/22/05) Pet. [Pet.] 76 9/30 11th

Q3 Finding or conclusion that Tetanus
vaccine causes chronic gastroparesis

Roper (12/9/05) Pet. [Pet.] 75 1/30 21st

Q4 Finding or conclusion that DTaP
vaccine causes diabetes

Meyers (5/22/06) Govt. [Govt.] 75 1/30 9th

Q5 Finding or conclusion that Tetanus
vaccine causes hand, wrist, and arm injuries

Sawyer (6/22/06) Govt. [Govt.] 75 0/30 not in top 30 (37th)

Q6 Finding or conclusion that Hepatitis A
vaccine can cause cerebellar ataxia

Stewart (3/19/07) Pet. [Pet.] 75 1/30 7th

Q7 Finding or conclusion that DPT vaccine
can cause acute encephalopathy and death

Thomas (1/23/07) Govt. [Govt.] 78 22/30 not in top 30

Q8 Finding or conclusion that MMR
vaccine can cause myocarditis

Walton (4/30/07) Govt. [Govt.] 76 2/40 16th

Q9 Finding or conclusion that Hepatitis B
vaccine can cause multiple sclerosis
or MS

Werderitsh (5/26/06) Pet. [Pet.] 77 17/30 1st

Q10 Finding or conclusion that Hepatitis B
vaccine can cause intractable
seizure disorder

Wolfe (11/9/06) Govt. [Govt.] 75 4/30 22nd

Q11 Finding or conclusion that Varicella
vaccine can cause encephalomyeloneuritis

Casey (12/12/05) Pet. [Pet.] 75 1/30 7th

318

of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781316761380.011

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Florida, on 03 N
ov 2017 at 09:27:27, subject to the Cam

bridge Core term
s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 319 — #9

Conceptual Legal Information Retrieval for Cognitive Computing 319

figure 11.2. LUIMA-Search: sample query (top) and sentence entry in Lucene database
index (bottom)

“multiple sclerosis,” or “MS.” Thus, a LUIMA-Search query appears to better capture
the intended meaning of the query text.

Recall from Section 10.5.3 that LUIMA-Annotate generates semantic informa-
tion about the sentence including the sentence type and other argument-related
data. In the next step of an AR system, this semantic information should be used
in the system’s response to a query. The semantic markup of a sentence is stored in
a database along with the sentence’s plain text. In this way, the database can score
each retrieved sentence on the basis of both a text match with the query as well as
co-occurring semantic concepts. In LUIMA, this was implemented with code from
the open-source Apache Lucene information retrieval software library.

The Lucene database stores the documents and indexes them in an inverted
index (see Section 7.4). In particular, it stores sentences, which are identified as
coming from particular legal decisions. Figure 11.2 (bottom) illustrates a sample sen-
tence entry in the Lucene DB index. Each entry represents the text of a sentence
in the entry’s “content” field, as well as information about the sentence’s argument
role in the document, that is, the sentence-level type, the concepts mentioned, and
information about its content, in terms of instances of its subsentence-level types.
For instance, in the given sentence, the level is “sentence,” the type is “Legal-
RuleSentence,” and the sentence is about “CausationTerm, CausationMention,
PlaintiffTerm, VaccineTerm, VaccineMention.”

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 320 — #10

320 Connecting Computational Reasoning Models and Legal Texts

The field identifiers in the LUIMA-Search query (Figure 11.2 (top)) including
“type:,” “about:,” and “content:” correspond to the ones in the example sentence
representation (Figure 11.2 (bottom)). LUIMA-Search compares the field entries in
a given query with those in the database index and retrieves all sentences responsive
to the query’s constraints. As illustrated in Figure 11.2, a LUIMA-Search query treats
all of the specified conditions as connected by logical OR terms. Ideally, given the
intended meaning of the query, the connectors should be ANDs in order to identify
documents that satisfy all of a user’s desired specifications. Given the limited data
in the corpus, however, an accommodation was necessary. By using disjunction to
relax the constraints, Lucene can retrieve sentences that are only partial matches.

Having retrieved sentences, LUIMA-Search ranks them according to the number
of query conditions that are satisfied using each sentence’s Lucene score according to
Apache Lucene’s built-in scoring system. The score measures a retrieved sentence’s
degree of match relative to the query using term frequency vectors to assess similarity
(Białecki et al., 2012). LUIMA-Search ranks documents in terms of the number of
responsive sentences retrieved from each document.

11.3.2. Reranking Documents with LUIMA-Rerank

As shown in the LUIMA pipeline diagram (Figure 11.1), LUIMA-Search passes the
documents it retrieves to the third module, LUIMA-Rerank, which learns how to
rerank documents to maximize their responsiveness to the user’s query (Grabmair
et al., 2015).

In Section 7.7, we encountered reranking in state-of-the-art legal information
retrieval systems like WN. A CLIR system’s retrieval module alone may not produce
the best ranking by itself. Reranking employs evidence derived from frequency infor-
mation in the documents’ texts, expert-generated annotations, citation networks, and
documents’ popularity in previous queries. The ranking function is optimized using
ML to determine the weights to ascribe to the different features.

Here, too, the goal of reranking is to learn feature weights with which to reorder
LUIMA-Search results to bring relevant results to the top. LUIMA-Rerank employs
features that capture argument-related information. It learns weights for the follow-
ing document features:

– Sentence count: the number of responsive sentences in a given document (the
same number that LUIMA-Search uses to compute the initial ranking).

– Maximum Lucene score: Highest Lucene score of all of the sentences in the
given document.

– VSS: Maximum cosine VSS value of the “about” fields of all sentences in a
given document and the query (see Section 7.5.2).

As explained in the previous section, all of these features take into account
argument-related information captured by the sentence-level and subsentence-level
annotations. In particular, the Lucene score is also argument-related since the

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 321 — #11

Conceptual Legal Information Retrieval for Cognitive Computing 321

sentences are indexed with argument-related information including sentence-level
type (see Figure 11.2, bottom).

LUIMA-Rerank learns the weights for this set of features from “true” rankings in
a training set created by a legal expert (described below). In the learning process,
the module examines each training set document’s true rank with respect to a query
and its reranking feature values. The module learns a logistic regression formula
that assigns weights to each feature (see Section 10.3.3). The weights are set so that a
global error function is minimized. The module then computes a new ranking score
for the document.

The researchers assessed different versions of LUIMA-Rerank employing differ-
ent subsets of the features. They employed two metrics for measuring ranking
performance that will be defined in the next section.

In the evaluation of the LUIMA Rerank versions, almost all subsets of the rerank
learning features performed equally well and better than the plain LUIMA-Search.
Using only the maximum Lucene score feature, that is, the highest Lucene score of
all of the sentences in the given document led to good performance. Adding the VSS
marginally improved the ranking performance. With all three features, however, the
improvement disappeared. As a result, for the final experiment (described below),
LUIMA-ReRank employed only VSS and the maximum Lucene score as rerank
learning features.

11.4. an experiment to evaluate luima

In experiments (as indicated at the right end of the LUIMA pipeline architecture,
Figure 11.1), LUIMA-Rerank’s new rankings of the LUIMA-Search outputs for 11
queries were evaluated against:

– a baseline ranking by a CLIR system,
– a true ranking established by a legal expert, and
– LUIMA-Search’s original ranking (Grabmair et al., 2015).

The CLIR system generated the baseline ranking as follows. Each of the 11 queries
shown in Table 11.1 was submitted to the CLIR as a baseline query. The first,
Q1, focused on the rule for establishing causation regarding vaccine injuries. The
remaining 10 (Q2 through Q11) focused on findings or conclusions that particular
vaccines caused particular injuries. Each of these was derived from the facts of 1 of 10
source cases, the gold standard cases listed in Section 10.5.2. The fact that there was
only one rule-focused query (Q1) reflects the fact that there was only one legal rule
of interest, the Althen test of causation-in-fact. Recall that the V/IP Corpus contains
all decisions in a two-year period applying that test.

The CLIR system retrieved and ranked a list of documents of which the top 30
per query were recorded as baseline ranks. These documents were pooled into a
collection, the “document base,” comprising 188 documents (11 queries ∗ 30 cases
per query − 142 duplicates).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 322 — #12

322 Connecting Computational Reasoning Models and Legal Texts

A legal expert generated the true ranking. For each query, the expert (the author
of this book, who spent five years as a litigator in a major Wall Street law firm and
has been a law professor since 1989) assessed the top 30 documents as to their useful-
ness. The expert based the assessment (solely) on the CLIR system’s case report for
each of the 30 documents. The CLIR system’s case report comprises a two-sentence
summary of the claim involved and the court’s decision, as well as four brief excerpts
from the retrieved case text with the search terms highlighted. The 30 documents
were then reranked to form the document’s true rank for a given query.

For each query, Table 11.1 shows source case information, the number of cases
the CLIR system returned, the number of cases in the CLIR system’s top 30 cases
that the expert deemed relevant, and where in its rankings the CLIR system placed
the source case. Even though the CLIR system was expected to retrieve and rank
highly the source case from which it was derived, this was frequently not the
case.

LUIMA-Search generated its initial ordering as follows. Based on the gold stan-
dard cases, the researchers created rule-based and ML text annotators using the
process explained in Section 10.5.3. The annotators were equipped to classify three of
the sentence-level types, LegalRuleSentence, EvidenceBasedFindingSentence, and
CitationSentence, as well as the associated subsentence-level types. These text anno-
tators were then applied to the pool of 188 documents in the document base. The
classifiers predicted the sentence-level annotations of all documents in the pool. The
resulting annotated texts were stored in the LUIMA-Search database in the Lucene
database format shown in Figure 11.2 (bottom).

Each of the 11 queries was translated manually into a LUIMA query like the one
in Figure 11.2 (top). The 30 cases associated with each query, as represented in the
Lucene database, were then ranked according to LUIMA-Search’s ranking method
by the number of sentences responsive to the LUIMA query (see Section 11.3.1).

LUIMA-Rerank generated its reordered rankings in a LOO cross validation with
11 runs, one for each query (see Section 4.4.3 for a description of cross validation).
Each query had its associated 30 documents represented in the Lucene database
format and the documents’ true rankings. Each document had associated features
for rerank learning, namely its VSS to the query and its maximum Lucene score (see
Section 11.3.2).

In each run, a different query’s documents became the test set and the remain-
ing 10 queries’ documents were the training set. The system examines each training
set document’s reranking features, learns a logistic regression formula that assigns
weights to each reranking feature, and computes a new ranking score for the docu-
ment. In the learning process, the document’s true rank for a query is examined and
the weights are set so that a global error function is minimized.

In each run, the completed logistic regression formula was used to predict a test
query ranking. Evaluation metric values were calculated and then averaged across
all the runs.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 323 — #13

Conceptual Legal Information Retrieval for Cognitive Computing 323

11.4.1. Evaluation Metrics

The systems’ ranking performance was assessed in terms of two commonly employed
metrics: AP and normalized discounted cumulative gain (DCG) to measure per-
formance. These measures are normalized in the [0,1] interval, with the best
score as 1.

The intuition underlying AP is the following. The program is searching for rel-
evant documents and retrieves a ranked list of candidates, not all of which are, in
fact, relevant. For each correctly returned (relevant) document, one computes the
precision and then takes an average. If the returned results were 1, 1, 1, 0, 0, 1, where
1 is a relevant document and 0 is not, then the precision at every correct point is
the number of correct documents that have been retrieved up to and including that
point divided by the total number of documents retrieved up to that point: 1/1, 2/2,
3/3, 3/4, 3/5, 4/6. The AP of this series is 0.92.

In other words, for computing AP, one proceeds one rank at a time down the
interval [1,30]. If the document at rank i is relevant, one measures the precision at
i (P@i). P@i is the proportion of retrieved documents in the top-i ranks that are rel-
evant. Finally, one takes the average of all P@i values. The number of P@i values
will equal the number of relevant documents. AP is expressed as a formula as follows:

AP=
∑

i∈R P@i
|R|

where R is the set of positions of the relevant documents, |R| is the number of items
i in the set R, and

∑
i∈R P@i is the sum of the precisions at i for all of the items in R

(Grabmair et al., 2015).
The intuition underlying normalized DCG is that each relevant document con-

tributes to the overall quality of a ranking depending on where it is ranked relative
to the ideal ranking. DCG is a weighted sum over the ranked items’ relevance. The
weight decreases as the rank of an item decreases. In this sense, the gain is “dis-
counted.” Usually, a logarithmic discount function is used to model the decreasing
weight. Normalized DCG (NDCG) divides DCG by the DCG measure of the best
ranking result, the ideal DCG or IDCG, and is always a number in [0, 1] (see Wang
et al., 2013).2

To measure the performance of the whole system, the systems’ ranking perfor-
mance on all of the queries is measured in terms of mean AP (MAP) and average
NDCG.
2 For the more technically inclined readers, in the LUIMA experiments, NDCG was defined as follows:

NDCG=
DCG
IDCG

DCGp =

p∑
i

2relevancei − 1
log2(i + 1)

where relevancei ∈{0, 1}, p is the rank position, in our case up to 30, DCG is calculated using the
predicted ranking, and IDCG, the “ideal” DCG, is calculated using the true ranking.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 324 — #14

324 Connecting Computational Reasoning Models and Legal Texts

MAP is the average over the set of all queries of the AP for each query. It is
defined as:

MAP(Q)=

|Q|∑
i

APi

|Q|

where Q is the set of all queries and APi is the average precision for each query.
Average NDCG is defined as

AverageNDCG=

|Q|∑
i

NDCGi

|Q|

where NDCGi is the NDCG for each query (Burges et al., 2005; Grabmair et al.,
2015).

Incidentally, since the true rank was created by reranking the cases retrieved by
the CLIR system, the recall (i.e., coverage of all relevant documents in response to
a query) of every baseline result is 1. In addition, since LUIMA-Search appends all
nonresponsive documents to the end of retrieved cases, the experimental system was
not compared to the baseline in terms of recall.

11.4.2. LUIMA vs. CLIR

In a series of experiments, for each query in Table 11.1, using the above metrics, the
researchers evaluated four configurations of LUIMA and the baseline by comparing
each one’s ranking of retrieved cases against the legal expert’s true ranking:

1. Baseline: CLIR system’s ranking for the queries in Table 11.1.
2. LUIMA-Search: Searching on full LUIMAquery, ranking documents in terms

of the number of retrieved sentences in each.
3. LUIMA-Search+ReRank: Searching on full LUIMA query, ranking docu-

ments in terms of number of retrieved sentences in each, reranking documents
with weighted rerank features.

4. LUIMA-Search, no sentence type: Searching on LUIMA query but with-
out the sentence type, ranking documents in terms of number of retrieved
sentences in each.

5. LUIMA-Search+ReRank, no sentence type: Searching on LUIMA query but
without the sentence type, ranking documents in terms of number of retrieved
sentences in each, reranking them using weighted rerank features (Grabmair
et al., 2015).

The researchers compared items (1) and (3) in order to assess whether LUIMA-
ReRank’s ranking adds value over and above the baseline CLIR system’s ranking.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 325 — #15

Conceptual Legal Information Retrieval for Cognitive Computing 325

figure 11.3. AP of LUIMA Versions v. Baseline for Eleven Queries and MAP (Grabmair
et al., 2015)

Comparing items (2) and (3) will show the effect of LUIMA’s reranking compared
with its search. As explained in Section 10.5.3, the LUIMA-Annotate module anno-
tated sentence levels for the documents that did not belong to the gold standard, but
not as effectively as hoped. The researchers examined how the system performed
without this module’s sentence-level annotations in order to assess any possible
negative effect on the search or rerank components’ performance.

Figure 11.3 shows the AP of the baseline and the four versions on the 11 queries as
well as the MAPs. Figure 11.4 shows similar results for NDCG and average NDCG.

LUIMA outperformed the CLIR system baseline in 10 of 11 queries and tied
it in one, as shown in Figures 11.3 and 11.4. In Q1 (the only query involving the
LegalRuleSentence type), LUIMA’s improvement over the baseline was small. In
Q2–Q11 (all of which dealt with the EvidenceBasedFindingSentence type), LUIMA
outperformed the baseline in all queries but tied in Q2.

The fact that all versions tied with respect to Q2 indicates that they all retrieved
the targeted case at the top of the list. For six queries (Q1, Q3, Q4, Q6, Q9, and
Q10), LUIMA-Search+ReRank, the retrieval system that employed sentence types
and reranking, performed best and obtained the highest overall average. In three
other queries (Q5, Q7, and Q8), LUIMA-Search+ReRank, no sentence type, per-
formed best; it ignored the sentence types. For one query (Q11), LUIMA-Search
performed better than the LUIMA versions that performed reranking. In Q1 (the
only query about the LegalRuleSentence type), the baseline performed very well,
and the LUIMA versions performed only marginally better. In seven of the queries

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 326 — #16

326 Connecting Computational Reasoning Models and Legal Texts

figure 11.4. NDCG of LUIMA Versions v. Baseline for Eleven Queries and Average
NDCG (Grabmair et al., 2015)

that focus on instances of EvidenceBasedFindingSentence (Q2–Q11), reranking
improved retrieval performance.

In three of the queries, ignoring the sentence type actually improved performance.
This reflects the weakness of the sentence classifier, which may sometimes block the
beneficial effect of identifying legal concepts.

Improving LUIMA’s Performance
In subsequent work, the researchers demonstrated an increase in LUIMA-Search’s
accuracy by expanding the structured queries with POS tagging. That is, the system
automatically tagged the contents of document sentences and of query texts with
the POS (noun, verb, determiner, etc.) played by each word and factored in the
similarity of the POS tags across query and sentences.

They also improved the performance of LUIMA-Rerank. They modified the pre-
vious voting method based solely on the number of sentences in the top N retrieval
results and added a new reranking feature based on the BM-25 (Best Match 25) met-
ric, a refinement of tf/idf weighting, that better accounted for the type and location
of any citations in sentences and document length (Bansal et al., 2016).

Discussion
The evaluation of LUIMA shows that automated annotation of instances of LUIMA
types (Vaccines, Injuries, Causation, and Sentence Types) in documents and their
use in indexing and querying led to better reranking performance than a CLIR

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 327 — #17

Conceptual Legal Information Retrieval for Cognitive Computing 327

system that did not use such information. A conceptual legal document retrieval
system, focusing on argument-related information and going from natural lan-
guage legal documents to retrieval results, is feasible, at least for a restricted set of
documents in the domain of vaccine injury claims.

By annotating sentence role types such as Evidence-Based Finding, and soon,
Legal Ruling or Holding of Law, an AR system could help a user to find “application
cases.” Beyond supporting a legal proposition in the abstract, such cases are examples
of applying a proposition to concrete facts which may be analogous to the user’s
problem (see Mart, 2010, p. 222).

Since LUIMA-Annotate has marked up the retrieved cases’ sentences in terms of
their sentence-level roles in the argument and various subsentence annotations, in
principle, the system can highlight the argument-related information for the user. In
particular, retrieved cases could be summarized in a way that is tailored to the user’s
argumentative need.Daniel Jurafsky distinguishes between extractive and abstractive
summarization:

Extractive summarization answers the query by pulling a set of short text pieces from
the documents (snippets) . . . Abstractive summarization expresses the ideas [in a
text] at least in part in different words. Abstractive summarization is much closer
to the language one would find in a legal memo and it is currently an important
research goal, but very difficult. (Remus and Levy, 2015, p. 22)

Presumably, argument-related information identified by LUIMA-Annotate, such as
whether a sentence states a legal rule, draws a legal conclusion by applying a legal
rule to facts, or reports a finding of fact, can help a program to perform abstractive
summarization or, at least, do a better job of extractive summarization.

In sum, the LUIMA system implements general and domain-focused annotation
types specific to legal textual information. It identifies subsentence annotations using
manually crafted rules and sentence-level annotations using aML sentence classifier
trained on a small set of gold standard documents. By taking these annotations into
account in the retrieval and reranking process, LUIMA’s results on the task of rank-
ing retrieved documents outperformed those of a commercial full-text legal retrieval
system baseline. These results, however, are subject to confirmation in testing with
larger, more diverse datasets. That work is currently underway.

11.5. continuing to transform legal ir into ar

LUIMA’s designers have applied legal expertise to intelligently engineer features for
argument mining, resulting in “smarter” ML and more intelligent reranking even
with far smaller amounts of data than one associates with data-mining (Grabmair
et al., 2015). LUIMA is a long way from transforming legal information retrieval into
AR but it provides a proof of concept and an architectural foundation.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 328 — #18

328 Connecting Computational Reasoning Models and Legal Texts

The path forward seems clear, but there are many challenges. As described below,
the key is to extend the techniques for annotating argument-related, substantive
legal, and propositional information in case texts.

The focus in this section is on future work; the goal is to describe the path in
sufficient detail that others can follow it. This section explains how a future Legal
Argument Retrieval/Cognitive Computing System, call it LARCCS, could be con-
nected to legal information retrieval systems and illustrates new kinds of conceptual
queries that it could support and that CLIR systems currently cannot. It describes
some extensions to a type system that will enable new kinds of conceptual queries
and addresses the prospects for automatically annotating the extended types and for
eliciting users’ argument needs in queries.

Although the section describes future work, it is not merely “pie in the sky.” The
plan for constructing a LARCCS prototype is informed by the experience of building
LUIMA, by the experiences of AI & Law researchers’ extracting argument-related
information from case texts, described in Chapter 10, and by the goal of con-
necting these techniques to existing computational models of legal reasoning and
argument.

11.5.1. Connecting LARCCS and Legal IR Systems

LUIMAprovides a guide for connecting a LARCCSprototype to existing legal IR sys-
tems. LUIMA’s annotation and reranking techniques can be applied to documents
retrieved by amore conventional legal IR system. The top n-ranked cases retrieved by
an external full-text legal information system using its normal inverted index, prob-
abilistic models of relevance, and reranking techniques (Section 7.4) could be fed
into a text annotation pipeline.

By adding an ability to perform semantic markup and reranking, the IR systems’
outputs could be reordered in terms of argument-related criteria. As a result, these
systems could effectively take into account more detailed information about why
the user is seeking the information and how he/she intends to use it in an argument.
External IR search systems such as LA, WN, or Google Scholar Cases may perform
their own reranking, but as far as known, such rerankings do not include argument-
related information.

Thus, in principle, it is possible that intelligent semantic analysis technology for
legal documents could improve an IR system’s performance without disrupting the
IR database and indexing. The semantic annotation and argument-based reranking
are applied only externally to the IR system’s outputs. A caveat is whether the text
annotation techniques can be applied efficiently enough to tens, hundreds, or thou-
sands of documents output by the IR system. For purposes of discussion, let’s assume
that it is possible with a sufficient commitment of engineering resources. This is a
big assumption, but here my goal is to motivate why such an effort could be worth
the investment.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 329 — #19

Conceptual Legal Information Retrieval for Cognitive Computing 329

11.5.2. Querying for Cases with Extended Argument-Related Information

A more comprehensive argument type system for retrieving, ordering, and summa-
rizing documents in terms of legally important concepts and relations would support
users in expressing a wider range of queries with a wider range of argument-related
constraints.

For example, an attorney representing a client in a vaccine-related case may wish
to know what cases there have been in which special masters made evidence-based
findings that a particular vaccine such as measles, mumps, and rubella (MMR)
caused a particular condition like intractable seizure disorder. The attorney might
want to know the kinds of evidence that the court accepted, and even more urgently,
the findings and evidence there may have been in other decisions that MMR does
not cause that condition.

Alternatively, an advocate may seek a case applying a legal rule in a situation
involving particular facts. A lawyer involved in a trade secret misappropriation case
may seek cases where a court has held in favor of or against a party under a legal rule
defining particular elements of a trade secret misappropriation claim. The lawyer
would like to find such cases where the facts of his current problem also were present,
for instance that the plaintiff’s product was unique, the plaintiff had taken some secu-
rity measures to protect the information such as obtaining defendant’s nondisclosure
agreement, but where there had also been a disclosure of some of the information
in a public forum.

Requests for information like these involve constraints expressed in terms of legal
concepts and argument-related patterns of information. The goal of developing
a cognitive computing system for legal AR is to support users in expressing their
information need in terms of queries that specify argument constraints like these.

That would be the goal of a LARCCS prototype. The next two figures show exam-
ples of formulations of requests for information that enable users to express their
argument needs. In Figure 11.5, those needs are formulated in terms of particular
argument roles in the V/IP domain, based on the DLF computational model of legal
argument (Section 5.8). For example, queries like numbers 4a, b, and c could imple-
ment the above V/IP information request concerningMMRvaccine causing seizures
in terms of existing sentence-level argument-role types and legal rule requirements.

In Figure 11.6, the information need is expressed in terms of queries in the trade
secret domain based on elements of the CATO, IBP, and VJAP argument models
(Sections 3.3.2, 4.5.2, and 5.7). These include existing sentence-level argument-role
types plus additional legal factor and value-related types (see Section 11.5.3) as well
as terms representing legal rule requirements. For instance, query number 3 could
implement the above trade secret rule application request.

Here, implements means expressing the queries in terms of constraints involving
sentence argument roles, legal rules and their requirements, trade secret legal factors,
and values underlying the factors.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 330 — #20

330 Connecting Computational Reasoning Models and Legal Texts

figure 11.5. Queries for cases with propositions playing particular argument roles (from
the V/IP Domain). Bold-faced terms represent existing sentence-level argument-role
types. Italicized terms represent legal rule requirements

More specifically, the conditions are expressed with an expanded list of argument
types including sentence-level LUIMA types (see Table 6.7) that have not yet been
used extensively, such as Legal Rulings or Holdings of Law, Evidence, Legal Poli-
cies or Values, and some new ones like Legal Factors and Applied Legal Value,
described below. The conditions also include various constraints on what the sen-
tence is about, specified in terms of domain-specific concepts. In vaccine injury law,
this includes, for example, causes and logical sequence of cause and effect. In trade
secret law, it includes factor F7 Brought-Tools (P) and underlying value,General Pub-
lic’s Interest in Fair Competition. In principle, queries expressing constraints in these

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 331 — #21

Conceptual Legal Information Retrieval for Cognitive Computing 331

figure 11.6. Queries for legal factors and argument roles (from the trade secret domain).
Bold-faced terms represent existing sentence-level argument-role types plus additional
legal factor and value-related types (see Section 11.5.3). Italicized terms represent legal
rule requirements. Underlined italicized terms represent legal policies or values

terms could be implemented for purposes of retrieval in a manner like the LUIMA-
Search query, shown in Figure 11.2. This specified a list of conditions including the
argument role of the targeted sentence as well as conceptual constraints on what the
sentence is about.

Ordinary legal IR systems can retrieve materials based on the words of queries
like those in the figures, but they do not understand the argument-related concepts
and constraints. An exclusively text-based search engine would treat these simply
as additional, common keywords, not as legal concepts specifying argument-related
information about the targeted role of similar sentences in the sought-for case doc-
uments. It may use keyword query expansion or a legal thesaurus, but even then the
keyword character of the concept labels remains. Even if the legal IR system can
retrieve cases relevant to the natural language queries, it could not use argument-
related information to order or summarize the cases in a manner tailored to the
problem the user seeks to address. If it could understand and manipulate such con-
straints, users would enjoy an unprecedented ability to express and find what they
really are looking for.

As explained in Chapter 12, the LARCCS approach could help new commer-
cial legal apps like Lex Machina (see Sections 12.2 and 12.3) take semantic features
related to the substantive merits of a case into account for retrieval and prediction.
Section 12.4.1 shows how legal apps based on LARCCS could process queries like
those in Figures 11.5 and 11.6 and engage in cognitive computing, enabling human

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 332 — #22

332 Connecting Computational Reasoning Models and Legal Texts

users to test legal hypotheses against corpora of cases. Before addressing these
possibilities, however, at least three challenges need to be addressed:

1. Expanding a type system to support a wider range of conceptual queries across
a wider range of argument, document, and domain-specific legal phenomena.

2. Annotating documents with the expanded type system.
3. Eliciting users’ argument needs in a convenient and reliable manner.

11.5.3. New Legal Annotation Types

In order to retrieve, order, and summarize legal documents, a LARCCS semantic
analysis system would need an expanded type system. The core types of Tables 6.6
and 6.7 provide a foundation, but would need to be supplemented with ones
that capture additional argument-related patterns, aspects of document structure,
propositional structure of legal arguments, and domain-specific information.

Additional Sentence-Level Argument-Role Types
The computational models of legal argument in Part I are associated with patterns
of argument in cases which have not yet been incorporated into such an extended
type system. For example, the VJAP model (Section 5.7.3) incorporates legal fac-
tors, issues based on legal rule requirements, and underlying policies and values as
illustrated in its models of the trade secret misappropriation domain (Figure 5.10)
and the values it protects (Figures 5.11 and 5.12). The CATO (Section 3.3.2), Bench-
Capon/Sartor (Section 3.5.1), and IBP (Section 4.5.2) models all refer to some subsets
of these.

In order to link thesemodels and legal texts, the type systemwould need to include
some new types associated with sentences discussing legal factors and underlying
values in the context of a legal rule requirement.

Some kinds of queries for which it will be important to identify such sentences are
illustrated in Figure 11.6. For example, query number 4 seeks pro-plaintiff trade secret
misappropriation cases, some of whose sentences play the following roles: focusing
on whether a particular legal rule requirement is satisfied (Info-Misappropriated),
identifying applicable legal factors (F14 Restricted-Materials-Used (P) and F16 Info-
Reverse-Engineerable (D)), or identifying an applicable policy or value (theGeneral
Public’s Interest in Fair Competition). Such sentences relate the discussion to issues,
factors, values, and their relations with which the VJAP model can make arguments
and predictions, as shown in its domain model (Figure 5.10).

These argument patterns could be expressed in terms of three additional sentence
types shown in Figure 11.7.

These types are intended to annotate parts of a case in which the court discusses
how the legal factors and, optionally, the values underlying the factors affect the
outcome of its decision whether a legal requirement is satisfied in a given case.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 333 — #23

Conceptual Legal Information Retrieval for Cognitive Computing 333

figure 11.7. New argument-role sentence-level types

These points in an opinion text identify features with which computational models
of argument such as the VJAP and DLF models can reason.

Although we have encountered these types of sentences mainly in trade secret
misappropriation and vaccine injury cases, they appear in decisions involving many
kinds of legal claims. In principle, all three types are general enough to apply in any
legal domain in which the corresponding computational models of evidentiary or
factor-based argument are appropriate.

Document Structure Types
In the preceding section and in Table 6.7, we have seen examples of sentence-level
argument-role types that capture typical argumentative patterns in legal documents.
As work discussed in Chapters 8 and 10 suggests, it may be both useful and feasi-
ble to add types for annotating structural elements on a wider scale, namely legal
document structure and legal argument structure.

Legal Document Structure types correspond to sectional divisions in a legal opin-
ion as indicated by headings, subheadings, and subject matter. A sectionmay present
the applicable law, state the facts of a case, or state conclusions about whether
the legal standards have been satisfied given the facts. Alternatively, a section may
perform some combination of these roles, effectively introducing a legal rule or
requirement, related fact-finding, and application of the rule to the evidence all in
one section. As discussed in Section 8.6, programs can now learn to differentiate
whether passages contain facts, legal discussion, neither, or both.

An ability to distinguish sections by their primary focus may help reduce uncer-
tainty in annotating propositions as involving legal rules, conclusions regarding legal
rule requirements, or fact-finding (and vice versa). The standard section types and
the LUIMA sentence types are associated: A law section often presents Legal Rule
sentences or requirements. A facts section often presents Evidence, Evidence-Based
Reasoning, Evidence Factors, or Evidence-Based Findings. A section applying law to
facts often presents Legal Rulings orHoldings of Law based onEvidence-Based Find-
ings for the disputed Legal Rule Requirements and Legal Rules. Of course, the way
legal documents are divided into sections varies by type of document, jurisdiction,
and even particular judge or author, which is a complicating factor.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 334 — #24

334 Connecting Computational Reasoning Models and Legal Texts

Legal Argument Propositional Structure identifies propositions that serve as
premises and conclusion in a court’s argument. Identifying premises and conclu-
sions was the focus of Mochales and Moens (2011), discussed in Section 10.3 and of
IBM Debater, as illustrated in Chapter 1.

As recognized byMochales andMoens (2011), premises and conclusions play a key
role in the generally nested argument structure of textual legal arguments regarding
issues and sub-issues. At various points in an opinion, a court introduces an issue
or topic, considers arguments in connection with the issue, and draws a conclu-
sion. For each issue, the court identifies sub-issues, considers arguments regarding
the sub-issue, and draws a conclusion. Following Feng and Hirst (2011, p. 989), the
nested arguments may be referred to as argument units. They comprise a conclusion
proposition and an optional premise proposition. Each of these propositions, in turn,
may comprise nested, smaller such units.

The nesting follows a court’s increasingly fine-grained analysis of legal and, ulti-
mately, factual issues. It follows the breakdown of a legal claim into the legal rules
defining the requirements, findings of fact, and a determination of whether the
requirements have been satisfied. Depending on the procedural posture of the case,
this may continue into consideration of the evidence for and against a finding.
In other words the nesting corresponds to the organization of the LUIMA sen-
tence types above, which itself reflects the DLF rule trees and chains of reasoning
presented in Section 5.8.

Beside nested argument structures, the legal argument propositional structures
also include the types of legal argument schemes (Section 5.2) employed to sup-
port an inference from a proposition, the templates, or “blueprints” for typical kinds
of legal argument. Such argument schemes include those for case-based argument
illustrated in CATO, for example, the argument downplaying/emphasizing distinc-
tion scheme in Figure 3.7, and in the VJAP model such as the argument from
inter-issue trade-off from precedent discussed in Section 5.7.3.

Additional Claim-Specific Types
While the above argument types apply generally across many legal domains (at least
within a common law judicial system), other necessary additions to the type system
would be geared to particular ones: claim-specific concepts, relations, and mentions
and presuppositional information.

Claim-specific concepts, relations, and mentions are those typical of a specific kind
of legal claim, its associated rules, and factors. Within a claim for vaccine injury or
trade secret misappropriation, certain concepts, relations, and mentions recur fre-
quently across cases. These include the claim’s legal rules and requirements whose
application given the facts are disputed issues. Claim-specific concepts in trade secret
misappropriation include the name of the claim and its elements or issues, such as
that the information was a trade secret (Info-Trade-Secret), or that it was used in

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 335 — #25

Conceptual Legal Information Retrieval for Cognitive Computing 335

breach of a confidential relationship (Confidential-Relationship) as per the IBP or
VJAP models (see Figures 4.4 and 5.10).

Claim-specific concepts also include instances of general semantic types that are
specific to that kind of claim. Trade secret misappropriation has its own legal fac-
tors, for example, F7 Brought-Tools (P), and its own applied legal values such as
the General Public’s Interest in Fair Competition. Within a particular legal domain
like trade secret law, the fact patterns associated with legal factors are stereotypes.
They are all instances of the sentence-level type, Legal Factor, but it makes sense to
associate a subtype with each one.

Each of a claim’s legal factors also needs to be associated with the various ways
in which it may be expressed linguistically. For example, the trade secret fac-
tor, F4 Agreed-Not-To-Disclose (P), applies to each of the sentences illustrated in
Section 1.4.4 drawn from real cases, such as “Newlin and Vafa had signed nondisclo-
sure agreements prohibiting them from using ICM software and tools upon leaving
ICM” and “Ungar signed a nondisclosure agreement.”

Other types of claims will have their own legal factors. This includes property
interests in wild animals (see Section 3.4) or trademark law claims, where factors are
employed in determining such issues as the likelihood of confusion, an element of
trademark infringement.

Presuppositional information includes subsentence types associated with factual or
linguistic concepts and relations important in discourse about a regulated domain.
While it is not feasible to represent all of the knowledge about the domain, one could
represent certain aspects given the legal issues that typically arise.

Table 11.2 shows some of that presuppositional information for the vaccine injury
domain and for trade secretmisappropriation. In the former domain, theAlthen rules
for causation focus on such facts as the time interval between a specific vaccination
with a vaccine covered by the statute and the onset of injury. In the latter, the mag-
nitude of certain legal factors (see Section 3.3.2) depends on particular values, such
as the number of disclosures to outsiders plaintiff made or the amount of product
development time and expense defendant saved by accessing plaintiff’s information.
These kinds of facts (associated with focal slot prerequisites in Hypo dimensions
(Section 3.3.2), or base factor-related concepts in Wyner and Peters (2010)) are
semantic information which can be annotated in opinion texts and used to facilitate
AR and case comparison.

Much of this part of the type system would not be of general applicability across
legal domains. On the other hand, some of the concepts and relations such as rea-
soning about temporal durations are general in nature, whether they refer to time
saved in product development, the elapsed time between injection and the onset of
an injury, or the time it takes for a fisherman’s nets to close. Research should explore
applying state-of-the-art temporal annotators like SUTime or HeidelTime tomarkup
dates, times, and durations in the case texts (see Strötgen and Gertz, 2013). An event
calculus could then reason with temporal constraints, for example, as illustrated in

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 336 — #26

336 Connecting Computational Reasoning Models and Legal Texts

table 11.2. Presuppositional information in two legal claim domains

Legal claim
domain

Semantic relations Meaning (objects or event referents)

Vaccine injury 1. Covered-vaccine a vaccine covered by the VICP
2. Specific-date a specific month, day, year
3. Specific-vaccination a vaccination on a Specific-date
4. Generic-injury a type of injury, adverse condition,

or disease
5. Injury-onset a symptom, sign, or test result associated

with the onset of a Generic-injury
6. Onset-timing-expected expected time interval between time of

vaccination with a Covered-vaccine and
the earliest Injury-onset

7. Onset-timing time interval between Specific-
vaccination and the earliest
Injury-onset

Trade Secret
Misappropriation

1. Number-disclosures-
outsiders

number of disclosures to outsiders
plaintiff made

2. Tools-brought product development tools
defendant employee brought
from plaintiff employer

3. Time-to-reverse-
engineer

amount of time it would reasonably take
to reverse engineer information

4. Security-measure-types types of security measures plaintiff took
5. Product-development-

savings
amount of product development time
and expense defendant saved by accessing
plaintiff’s information

6. Improper-means-types types of improper means
defendant engaged in to obtain
plaintiff’s information

7. Employee-inducements value of inducements defendant offered
to plaintiff’s former employee

query 4h in Figure 11.5 concerning onset times of an injury after a vaccination (see
Zhou and Hripcsak, 2007; Thielscher, 2011).

11.5.4. Prospects for Annotating Expanded Legal Types

Assuming that one has expanded a type system to support conceptual queries over
a wider range of argument patterns, document structure, and claim-specific types,
the second challenge for developing a LARCCS prototype involves the prospects for
automatically annotating legal documents in terms of these new types.

The expanded type system captures different argument-related aspects of a text.
For instance, Figure 11.8 illustrates an excerpt from the trade secret opinion in

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 337 — #27

Conceptual Legal Information Retrieval for Cognitive Computing 337

figure 11.8. Argument mining for the Mason case opinion. Annotations (with
WebAnno) are: trade secret misappropriation legal factors, core LUIMA sentence types,
proposition/premise or proposition/conclusion, and ARGUMENT SCHEMES

the Mason case, whose facts are summarized in Figure 3.2. The sentences have
been annotated manually in terms of four different types using WebAnno (Yimam
et al., 2013):

– various trade secret misappropriation legal factors.
– various core LUIMA sentence types.
– proposition/premise or conclusion as in Mochales and Moens (2011).
– various argument schemes as in Feng and Hirst (2011).

While it is still an empirical question how reliably humans, and how success-
fully computers, can mark up these types in legal cases, annotation techniques have
been developed and evaluated for many of them. Trade secret factors such as F6
Security-Measures, F15 Unique-Product, and F16 Info-Reverse-Engineerable have
been marked up automatically (see Section 10.4) and computer environments have
supported manually annotating such factors (see Section 10.4.3 and Figure 10.5).
Techniques have been applied and evaluated for annotating three core LUIMA sen-
tence types including LegalRule and EvidenceBasedFinding (see Section 10.5.3).
Premises, conclusions, and argument schemes including argument from example

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 338 — #28

338 Connecting Computational Reasoning Models and Legal Texts

(see Section 10.3.5) have been automatically identified based onmanual annotations
(see Section 10.3).

Analyzing all of these types in one project has not yet been attempted. An
undertaking of that scope presents some special challenges discussed below in
Section 12.5.1. It also presents some opportunities.

In semantic retrieval of argument-related information, the sentences of inter-
est often are instances of multiple types. Almost all of the annotated sentences in
Figure 11.8 were marked-up in terms of more than one type. For example, consider
the following sentences from the second paragraph of the Mason text in the figure:

He testified that he told only a few of his employees – the bartenders – the recipe. He
stated that each one was specifically instructed not to tell anyone the recipe. To pre-
vent customers from learning the recipe, the beverage was mixed in the “back” of
the restaurant and lounge.

A human has marked up that excerpt as instances of the sentence-type, Evidence,
the legal factor, F6 Security-Measures p, and argument structure type, Proposition/
premise.

It seems plausible that sentences signaling trade-secret-specific legal factors will
also tend to be evidence or evidence-based findings of fact and premise propositions
in a judicial argument. Factors abstractly summarize patterns of facts in evidence
and capture their impact as premises in an argument that an issue has or has not
been satisfied. Moreover, the terms and phrases, “told only a few of his employees,”
“recipe,” and “instructed not to tell anyone the recipe” may, given training instances,
suffice for a ML algorithm to associate this kind of evidence with the particular legal
factor, F6 Security-Measures.

In addition, the excerpt appears in a section that deals with the application of
law to facts (see the proximity in the section of legal rule sentences, legal rulings or
holdings of law, and evidence-based findings of fact). As noted in Section 11.5.3, a
program can learn such document structure types and automatically identify them
in legal documents to some useful extent.

The excerpt also appears in a progression of arguments leading to a conclusion,
namely a legal ruling and holding of law, that plaintiffMason hadmet the standard of
providing some evidence that his cocktail recipe was a trade secret. As to this kind of
argument structure, Mochales and Moens (2011), Levy et al. (2014) (in Debater), and
Feng and Hirst (2011) have shown some success in annotating nested argument units
and argument schemes in legal argument (see Sections 10.3.3, 10.3.5, and 10.6.1).

Thus, the sentences of interest in conceptual legal information retrieval may be
annotated by multiple argument-related and document-structure types. A ML algo-
rithm could probably detect the significance of the conjunctions of these telltale
signs, but the challenge remains.

At a lower level of the type system, annotating certain presuppositional infor-
mation could enable more focused case comparisons. In Figure 11.8, for instance,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 339 — #29

Conceptual Legal Information Retrieval for Cognitive Computing 339

the evidence concerning factor F16 Info-Reverse-Engineerable is significant. Trade
secret protection lasts only as long as it would reasonably take to reverse engineer
the secret. If this information is available in a case, it is worth recording (see Time-
to-reverse-engineer in the list of presuppositional information in Table 11.2). The
testimony that Lynchburg Lemonade could be readily duplicated after just one
tasting is, therefore, potentially quite damaging. The fact that plaintiff Mason won
despite this limitation makes the Mason case a useful counterexample to the effect
of factor F16. Ideally, a conceptual legal information retrieval system could enable
users to retrieve such counterexamples, but this needs to be demonstrated.

To the extent that the presuppositional information in Table 11.2 can be annotated,
the conceptual IR queries could specify constraints in more detail. See, for exam-
ple, query 4h in Figure 11.5 seeking evidence-based findings of causation despite
onset timing (the time interval between specific vaccination and earliest injury onset)
greater than six months. Similarly, query 5 in Figure 11.6 seeks a legal ruling or hold-
ing of law favoring plaintiff despite more than 1,000 disclosures to outsiders. The
former involves some simple temporal reasoning. The latter is like reasoning with
the magnitude of a dimension, Secrets-Disclosed-Outsiders, in Hypo (Section 3.3.2).
Both queries would be beyond the capacity of current legal information retrieval
tools, but annotating this kind of presuppositional information could enable users to
express more exactly the kinds of cases they need for their arguments.

The issues of who would manually annotate texts like that in Figure 11.8 for use
as training instances and how they would do so are discussed in Section 12.5.2.

11.5.5. Eliciting Users’ Argument Needs

The third challenge for developing a LARCCS prototype to support conceptual legal
information retrieval is designing a methodology for eliciting users’ argument needs
in a convenient and reliable manner. A legal app would need to provide an easy-
to-use interface for specifying more complex queries that it could then expand into
the kind of structured queries specifying argument-related constraints. This will be
a difficult challenge to meet.

In order for a conceptual information retrieval system to process a query, it needs
to be in a form that canmatch the way that documents are indexed in a database such
as Lucene. Table 11.3 illustrates what such a structured query looks like for a simple
natural language query. It contains specifications of the fields and their contents and
had to be constructed manually.

While natural language text would be the most convenient way for users to frame
queries, relying on NLP of more complex queries expressed in plain English is not
yet a feasible option.

Leading users to express their retrieval requirements in terms of argument-related
constraints will likely require a human–computer interface that can integrate a
number of techniques. Intuitively, a graphical interface could help.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 340 — #30

340 Connecting Computational Reasoning Models and Legal Texts

table 11.3. Structured query translated from “Finding or conclusion that MMR vaccine
causes intractable seizure disorder”

Feature Meaning Structured Query Entry

Sentence type: Annotated sentence type such
as Evidence Based Finding
Sentence or Legal
Rule Sentence.

EvidenceBasedFindingSentence

About: What sentence is about in
terms of annotated mention or
terms, such as VaccineTerm,
IllnessTerm, or CausationTerm.

(OR VaccineMention
VaccineTerm CausationMention
Causation–Term AdverseMedical
ConditionMention IllnessMention
IllnessTerm)

VmNormalization: Normalized name of vaccine
mentioned in sentence.

“mmr”

ImNormalization: Normalized name of illness
mentioned in sentence.

“null”

Content: Plain text of sentence. (OR “MMR vaccine” “causes”
“seizure” “disorder”)

POS–tag: Tags indicating part of speech
of each component of sentence
content.

(OR “Finding VBG” “or CC”
“conclusion NN” “that IN”
“MMR NN” “vaccine NN” “causes
VBZ” “intractable JJ” “seizure NN”
“disorder NN”)

Citation: Whether sentence, preceding
sentence, or succeeding sentence
is a citation.

NA

In particular, argument diagrams may assist users to specify information about the
propositions and argument roles in which they are interested. The diagrams would
be based on elements of a computational model of argument such as theDLFmodel
(Section 5.8) or the VJAP model (Section 5.7). Consider, for example, Figure 5.15,
which presented aDLF argument diagram representing applicable statutory require-
ments, including a rule tree of conditions. Figure 5.16 illustrated a chain of reasoning
in the legal decision that connected evidentiary assertions to the special master’s
findings of fact on those conditions (Walker et al., 2011).

One can imagine a user submitting a query to the legal app by means of an input
data scheme based on a more abstract version of such a DLF argument diagram.
The scheme would present input structures based on rule trees and reasoning chains
about which the legal app has information. Users would select an input structure
for the legal rule of interest. Figure 11.9, for example, illustrates an input scheme
concerning the Althen rule of causation.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 341 — #31

Conceptual Legal Information Retrieval for Cognitive Computing 341

figure 11.9. Query input data scheme. Nodes represent successive levels of a DLF-style
rule tree and reasoning chain. Here user seeks cases with evidence and an evidence-
based finding that “MMR vaccine can cause intractable seizure disorder and death,” in
connection with a legal ruling on the “medical theory causally connects” requirement
of the Althen rule on causation-in-fact

The structure includes nodes abstractly representing various successive levels of
the rule tree and reasoning chain, from the legal rule at the left down to the evidence
level at the right. In other words, each node refers to an argument role associated
with the sentence-level type of the corresponding node in the tree or chain. Here,
the nodes refer to a Legal Rule (the Althen rule of causation-in-fact), a Legal Rule
Requirement (“medical theory causally connects”), an Evidence-based Finding, and
so on. The system would fill in the “citation” and “concept” information from the
rule tree.

The user indicates (with check marks) the level[s] of the rule tree and chain for
which he/she seeks information and fills in the “text” field of the targeted node with
the specific proposition of interest. In effect, a check mark indicates the argument
role the proposition should play in the cases retrieved. Here the user seeks cases
with evidence and an evidence-based finding of causation in connection with a legal
ruling on the “medical theory causally connects” requirement of the Althen rule on
causation-in-fact. He/she has specified that the evidence-based finding should be
that “MMR vaccine can cause intractable seizure disorder and death.” Conceivably,
the system could associate concepts with those mentioned in the proposition, for
example, a normalized MMR-vaccine concept.

In effect, the filled-in data scheme would guide the IR system in retrieving and
ranking cases for relevance given user-indicated argument-related constraints. One
could imagine similar input schemes based on legal factor-based models of a claim,
such as the VJAP domain model of Figure 5.10. Such a structure could aid a user in
specifying the issues and factors for which they seek legal holdings or evidence-based
findings. The system would offer a list of input schemes corresponding to the paths
through the model for which it has information.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 342 — #32

342 Connecting Computational Reasoning Models and Legal Texts

One could also develop input forms with items specifying argument-related query
constraints similar to the above. Users would indicate that they seek documents
that have sentence(s) playing particular argument roles whose content they specify
with propositions. Menus of concepts and citations would help users in completing
the forms. Where targeted information is spread across multiple sentences, a form-
based approach could change the granularity of entry from sentences to passages or
paragraphs. This approach could be used in place of a graphical interface or as a
supplement.

Conceivably, natural language versions of input queries may serve as a comple-
mentary medium for confirming the user’s intention. The system could translate
a query that the user entered with an input scheme or form into an equivalent
natural language version. The interface could offer menu options with which the
user could refine or modify the query and observe the effects on the natural lan-
guage version. For example, the system could translate the query represented in
Figure 11.9 as “Retrieve all sentences, in the context of the Althen causation-in-fact
rule’s requirement of a medical theory causal connection, that contain a finding
of fact and evidence that the MMR vaccine can cause intractable seizure disorder
and death.” Then, it would ask the user to confirm the translation or modify the
query.

11.6. conceptual information retrieval from statutes

So far the discussion has focused primarily on conceptual legal information retrieval
of argument-related information from a corpus of legal cases. Towhat extent can con-
ceptual legal information retrieval be applied to statutes and regulations? As with
AR, the answer depends on developing a type system to capture concepts that are:
(1) important to users’ queries and the problems they are trying to solve and (2) capa-
ble of automatic annotation in statutory and regulatory texts and other documents
that refer to them.

For example, medical personnel in the public health emergency domain intro-
duced in Chapter 2 might face a situation involving a patient with a rare but
contagious disease. Ideally a conceptual legal information retrieval system could
help them easily find answers to questions like “What regulations establish reporting
relationships between government public health agencies and hospitals concerning
contagious diseases?”

A CLIR program would most likely misinterpret such a query submitted as text
because it could not understand the concepts to which it refers or the network of
relationships among instances of the concepts established by regulations.

This section first addresses a type system approach to representing the regula-
tory concepts, describes a network-based technique for representing legally man-
dated relationships between instances of the concepts, and then illustrates how the
networks are useful for conceptual legal information retrieval.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 343 — #33

Conceptual Legal Information Retrieval for Cognitive Computing 343

11.6.1. A Type System for Statutes

Although legal ontologies have been developed for statutory domains (Section 6.5),
as far as known, efforts are just beginning to apply a type system and pipeline
approach to representing the semantics of regulatory texts for purposes of enabling
conceptual information retrieval (see, e.g., Wyner and Governatori, 2013, discussed
in Section 9.5).

A suitable system of general statutory types would include structural elements of
statutes, types of legal rule statements, and elements of legal rules, as well as concepts
and relations more specific to a regulatory domain. Some useful general statutory
types are shown in Figure 11.10 in the left column. At the top is an incomplete listing
of the structural elements commonly encountered in statutory texts such as num-
bered elements like titles, sections, paragraphs, chunks of text that are separated
typographically but not numbered, kinds of sections, and kinds of cross-references.

The figure lists types of “statements,” a basic component of a statutory provi-
sion, including definitions and rule statements. A statement can be either a whole
sentence or a part of the sentence. There are also types of rule statements, for exam-
ple, rule statements that impose an obligation, confer a permission, etc. Three

figure 11.10. General (left) and domain-specific (right) statutory types

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 344 — #34

344 Connecting Computational Reasoning Models and Legal Texts

figure 11.11. Statutory conceptual queries from the Public Health Emergency domain

common parts of a rule statement are also listed: the antecedent “if” part, the
consequent “then” part, and exceptions.

The lower half lists a class of statutory statement variables that seem of general
applicability for statutory rules including the action that a statutory provision indi-
cates with a certain level of prescription an acting agent should or may perform with
respect to a receiving agent given a certain condition within a particular time frame in
order to achieve a particular goal and legislative purpose (see Sweeney et al., 2014).

Statutes also have regulatory topics and regulate domains that involve certain con-
cepts that are useful for representing the semantics of what a rule statement is about.
Some additional types for concepts in a particular regulated domain, public health
emergency preparation and response, are shown in the right column of Figure 11.10.
Our public health colleagues at the University of Pittsburgh have identified these
concepts, for example, public health system actors, kinds of emergencies, and the
associated actions such as surveillance, reporting, and quarantine. As discussed in
Section 9.7.1, they have used these concepts in manually annotating 12 states’ pub-
lic health emergency statutes, and we have applied ML to identify the concepts
automatically in statutory texts.

With a system of statutory types like these, one could compose conceptual queries
like the ones shown in Figure 11.11 with which to retrieve statutory information.
For instance, query number 2 expresses the above example about regulations that
establish reporting relationships between government public health agencies and
hospitals concerning contagious diseases.

Ideally, a program would use a type system and text mining techniques automat-
ically to identify these semantic types in both texts and queries. It would use this
conceptual legal information to rank texts in response to user queries, leading users

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 345 — #35

Conceptual Legal Information Retrieval for Cognitive Computing 345

more quickly to the answers they seek, and to highlight and abstract the retrieved
texts so that users understand what they have retrieved and how it addresses their
queries.

A conceptual information retrieval system like the one envisioned would “know”
that the semantic features captured in the type system and annotated in the texts
are important, but it would not know from the start how important the features are
to the different types of queries users submit. As users process queries, however, the
system could learn how important the features were to successful queries using ML
techniques like those in Section 11.3.2. Based on users’ feedback as to which queries
achieved their goals, the system would update its weights for assessing confidence
in the responsiveness of documents to past queries and thus refine its method for
assessing its confidence in its ranking of documents given a new query. Thus, in
a sense the users would “teach” the conceptual retrieval system how to measure
relevance in this regulatory context.

11.6.2. Network Techniques for Conceptual Legal IR

A number of projects employ network analysis, that is, drawing inferences about
relevance based on linkages and their weights in a network, to implement concep-
tual legal information retrieval. As mentioned in Section 7.7, LA extracts, from its
full-text case law corpus, a network of special legal issues, which can assist users
in retrieving other cases for the same issue. WN’s reranking function takes into
account citation networks. The system in Mimouni et al. (2014) retrieved documents
based on queries containing semantic descriptors and indicators of cross-referential
relations between documents in a citation network (e.g., “Which orders talk
about abnormally annoying noise . . . and make reference to decrees talking about
soundproofing?”).

In a statutory legal information retrieval application,Winkels and Boer (2014) have
developed a method for automatically determining a context of laws relevant to the
particular legal article a user has retrieved from an online hyperlinked legislative
database. The small corpus comprises two articles of the Dutch “foreigners law.” For
each article, a “context network” was developed comprising a selection of all incom-
ing references to, and all outgoing references from, the article in focus. The contexts
were based on a weighting scheme, which favored references that are outgoing, are
not internal references, refer to definitions in prior articles, were recently changed,
or have a high degree of network centrality.

Network analysis has supported corpus-based inferences about legal regulations.
The system in Hoekstra and Boer (2014) helps answer questions such as “What is
the most important or influential regulation in the Netherlands?” by analyzing the
network of co-citations between the interconnected web resources associated with
the legal regulations in the MetaLex Document Server. Szoke et al. (2014) also

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 346 — #36

346 Connecting Computational Reasoning Models and Legal Texts

employed citation network analysis in order to determine themost influential regula-
tions in a corpus of hundreds of legislative documents represented in HTML format
from which citation information was extracted automatically. In a network of legal
sources, Gultemen and van Engers (2014) employed a fine-grained interlinking of
statutory law at the paragraph–article level.

Most of the above network-based approaches relied on citation linkages, but one
can also employ statutory networks to represent semantic aspects of the laws.

11.6.3. Conceptual Legal IR with Statutory Network Diagrams

The LENA project at the University of Pittsburgh School of Public Health employs a
statutory network for conceptual legal information retrieval. As noted in Section 2.6,
links in such a network represent relationships between participants mandated by
statute. Specifically, LENA network diagrams graphically represent which agencies
and actors in a states’ public health system are directed by statute to interact with
one another in order to deal with public health emergencies (Ashley et al., 2014).

The system could help users, such as public health agents working in field offices,
to answer questions such as “What regulations establish the relationships between
government public health agencies and hospitals?” A statutory network diagram like
the one in Figure 11.12 serves as a visual index into the legal information database.
When a user clicks on a link, the system could retrieve the specific statutory pro-
visions that establish the relationship between participants and that justify the link
between the nodes. In this way, LENA statutory network diagrams act as a concep-
tual interface into an Emergency LawDatabase of the statutory texts that direct these
interactions. Since public health agents in the field may not be attorneys familiar
with full-text legal IR tools, it can be more intuitive to retrieve provisions relevant to
their responsibilities by clicking on a link in the diagram (Ashley et al., 2014).

For example, LENA statutory networks could have assisted humans in drawing
legal inferences in the aftermath of the situation in 2014 when a patient, Timothy
AllenDuncan, arrived at the Emergency Department of Texas Presbyterian Hospital
complaining of nausea and headache following a trip to Africa. He was examined
and released, but he returned to the hospital and soon after died of hemorrhagic
fever caused by the Ebola virus. According to a subsequent report of the U.S. House
of Representative’s Energy and Commerce Committee, it was “unclear when and
how the Texas Department State Health Services was notified that Mr. Duncan’s
symptoms were consistent with Ebola.” In light of apparent communication lapses,
it appears that the hospital emergency department staff had not been sufficiently
alerted to the possibility of seeing an Ebola-exposed patient (Ashley et al., 2014).

In order to demonstrate the utility of LENA and the Emergency Law Database,
researchers at the School of Public Health used them to answer the question “What
Texas laws require interaction between hospitals and governmental public health

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C
11”

—
2017/5/27

—
12:02

—
page

347
—

#37

figure 11.12. Texas LENA Statutory Network (Ashley et al., 2014)

347

of use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781316761380.011

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversity of Florida, on 03 N
ov 2017 at 09:27:27, subject to the Cam

bridge Core term
s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 348 — #38

348 Connecting Computational Reasoning Models and Legal Texts

entities?” Answering such a question is straightforward for legally trained person-
nel using commercial legal IR systems, but it would be problematic for nonlegally
trained people to find the answer quickly.

The screenshot of LENA in Figure 11.12 shows the legally directed network of
agents named by Texas law concerning epidemic emergencies involving infectious
diseases. Circular nodes represent agents in the public health system. A line (or
“edge”) connecting agents shows that a law or group of laws directs action between
two agents. Its thickness represents the number of legal directives requiring such
interaction. Governmental Public Health is the largest node, representing state and
local boards of health and health departments. The size of a node corresponds to
the agent’s centrality in the network; the larger the node, the more central the role
the agent plays. It is proportional to the number of incoming directives from, and
outgoing directives to, other agents. The darker link between Governmental Pub-
lic Health and Hospitals is bidirectional; some of the functions between the two
agents are instigated by Governmental Public Health, and others are initiated by
Hospitals.

When a user selects the link between these two agents, the LENA Emergency
Law Database returns 119 laws that direct some kind of interaction between these
agents. In order to narrow the search, a user can enter terms like “reportable” and
“diseases” as key words. This yields 24 citations, 3 of which relate to the question
of interest. These laws require hospitals in Texas to notify the local or regional
health department by phone immediately after identifying a case of viral hemor-
rhagic fever. There do not appear to be any Texas statutory requirements mandating
that health-care providers share information concerning a patient’s travel history or
that require hospitals to delve into a patient’s point of origin. Nor did any of the 24
cited laws direct communication from governmental public health agencies to hospi-
tals concerning an ongoing health alert (such as Ebola was at the time) (Ashley et al.,
2014). Thus, the LENA tool and the Emergency Law Database could assist policy-
makers to identify gaps in a state’s regulatory scheme for dealing with public health
emergencies.

The statutory network diagrams and database could also help policy-makers and
legislators draw comparisons with other states. Researchers can conduct similar
searches to discover and compare different states’ disease reporting requirements.
Searches with the LENA database revealed that epidemic emergency reporting
requirements can be quite different from that in Texas. For example, Kansas and
Wisconsin both require hospitals to report such disease-related events to a govern-
ment agency within hours (Ashley et al., 2014).

The results provided with LENA tools are based on a snapshot of the states’
infectious disease response networks. The statutes and regulations undergo frequent
revision and the Emergency Law Database and LENA resources would need to be
updated regularly to be reliable. Of course, that is where automated extraction of
information from statutory texts would be especially useful (see Section 9.7.1).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C11” — 2017/5/27 — 12:02 — page 349 — #39

Conceptual Legal Information Retrieval for Cognitive Computing 349

11.7. conclusion

This chapter has presented programs that employ text annotation for conceptual
legal information retrieval and that can assist human users in finding relevantmateri-
als with which to draw legal inferences. The next chapter considers tools that enable
computational models of legal reasoning to assist humans by drawing certain kinds
of legal inferences.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.011
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:27:27, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.011
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 350 — #1

12

Cognitive Computing Legal Apps

12.1. introduction

The prototype proposed in Section 11.5 would transform legal information retrieval
into AR. If, as argued there, some of the legal knowledge representation frameworks
of Part I’s computational models of legal reasoning, argument, and prediction can be
annotated automatically in case texts, then a legal app could accomplish more than
conceptual legal information retrieval. It could support cognitive computing. This
chapter describes a cognitive computing environment tailored to the legal domain
in terms of tasks, interface, inputs, and outputs and explains how type systems and
annotations based on the computational models will help humans frame hypotheses
about legal arguments, make predictions, and test them against the documents in a
corpus.

A hypothesis predicts how a legal issue should be decided, such as:

– The plaintiff should win the issue of trade secret misappropriation where defen-
dant deceived it into disclosing its confidential product data even though the
information could have easily been reverse engineered.

– The plaintiff can still show causation even thoughmore than sixmonths elapsed
between the vaccination and the onset of the injury.

– Plaintiff’s claim for conversion should fail where she had not actually caught the
baseball, even though the defendant intentionally interfered with her attempt.

Posing and testing legal hypotheses like these is a paradigmatic cognitive com-
puting activity in which humans and computers can collaborate, each performing
the intelligent activities that they do best. Humans know the hypotheses that matter
legally; the computer helps them to frame and test these hypotheses based on argu-
ments citing cases and counterexamples. The type system annotations will enable
a conceptual legal information system to retrieve case examples relevant to the
hypotheses, generate summaries tailored to the users’ needs, construct arguments,
and explain predictions.

350
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 351 — #2

Cognitive Computing Legal Apps 351

The chapter discusses challenges that still need to be addressed in order to
construct these new CCLAs. How can the computational models of case-based,
rule-based, and value-based legal reasoning and argumentation be integrated with
conceptual legal information retrieval? What roles do the type system and pipelined
text annotators play in this integration? What kind of manual conceptual annotation
of training sets of documents will be required? What will CCLAs look like? How will
they help humans to frame and test legal hypotheses?

After explaining some general limitations of the approach, the chapter explores
how far one can progress in realizing computational models of arguments based
on legal texts. One can extract instances of argument schemes, use them to direct
users’ attention to relevant texts and passages, and suggest arguments and counter-
arguments. But can a system suggest novel arguments? Pose new legal hypotheses
that it has reason to believe would be interesting and test them? What lies on the
legal horizon, and where should a would-be developer begin?

12.2. new legal apps on the market

In the last year, Legaltech News (Legaltech News, 2016) reports new developments
in legal apps almost every week.

12.2.1. Ross

Perhaps the most intriguing of the newer legal apps, Ross, a cloud-based legal QA
service based on IBM Watson (Ross Intelligence, 2015), accepts questions in plain
English and returns answers based on legislation, case law, and other sources. Based
on its understanding of users’ questions in natural language, such as “Can a bankrupt
company still conduct business?,” Ross provides an answer along with citations, sug-
gests readings relevant to the topic, and also monitors the law for changes that can
affect a user’s “case” (Cutler, 2015).

A team of law students at the University of Toronto created Ross, taking second
place in an IBM-hosted contest, and with IBM support created a Silicon Valley start-
up (Jackson, 2015). Their demo video lists sample questions the program can handle,
including:

1. What corporate records does a Canadian company need to keep?
2. How much can directors of Canadian corporations add to the state capital

account of a class of shares?
3. Can an employee start a competing business?
4. If an employee has not been meeting sales targets and has not been able to

complete the essentials of their employment can they be terminated without
notice? (Jackson, 2015).

In response to the last question, the Ross screen cites Regina v. Arthurs, [1967]
2 O.R. 49, 62 D.L.R. (2D) 342, 67 C.L.L.C. 14,024 (C.A.) along with excerpts and

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 352 — #3

352 Connecting Computational Reasoning Models and Legal Texts

text. Ross reports 94% confidence in the case’s responsiveness and summarizes the
decision: “If an employee has been guilty of serious misconduct, habitual neglect of
duty, incompetence, or conduct incompatible with his duties, or prejudicial to the
employer’s business, or if he has been guilty of willful disobedience to the employer’s
orders in a matter of substance, the law recognizes the employer’s right summarily to
dismiss the delinquent employee.” Ross suggests additional readings from legislation,
case law, legal memoranda regarding “just cause terminations,” and other sources.
It also monitors new materials added to the corpus that may be relevant to a user’s
previous queries (Cutler, 2015).

Remus and Levy characterize the approach of “IBM Watson and similar question-
answering systems” as requiring experts to

attach to each paragraph [of each document in an assembled project database] a set
of natural language [legal] practice questions such that the paragraph is the correct
answer for each of the attached questions. (Remus and Levy, 2015, pp. 24f)

For example, a question might be “When can a debtor reject a collective bargaining
agreement?” (Remus and Levy, 2015, pp. 25).

Since questions like this can be phrased in multiple ways, the system needs to
recognize that a user has asked a version of a question that the system knows how to
answer. For instance, a user may phrase the question more specifically:

Can a debtor reject a collective bargaining agreement where debtor is a city that
filed for Chapter 9 bankruptcy and previously attempted to negotiate with a private
union before rejecting its collective bargaining agreement?” (Remus and Levy, 2015,
pp. 26)

The challenge is whether a system can learn to recognize the variations based
on a training set of versions of each question provided by experts. The system will
learn weights associated with features of the training instances that distinguish the
positive from the negative instances of the question. These features comprise word
or n-gram frequencies (Section 8.3), their synonyms and hyponyms in word networks
(Section 6.3), concepts mentioned and their relationships (Section 6.7) (see Remus
and Levy, 2015, pp. 26). The learned weights, in turn, inform the system’s level of
certainty that it “understands” the user’s question.

As users submit new versions of a question, the system forms new links
between them and its pre-stored answer (see Remus and Levy, 2015, p. 27). In
this way, Ross learns from user feedback. For instance, the Regina v. Arthurs
case is followed by a query inviting users to “press thumbs up” to save the
response to their “case” “if the response is accurate” or to “press thumbs down
for another response.” The feedback is intended to inform and update Ross’s con-
fidence in the responsiveness of the answer to the user’s version of a question
(Cutler, 2015).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 353 — #4

Cognitive Computing Legal Apps 353

While Ross improves in responding to questions, its responses are pointers to rele-
vant passages in legal texts. It does not appear that Ross can more actively assist users
in making arguments or predicting outcomes.

12.2.2. Lex Machina

LexisNexis has recently acquired Lex Machina, the service that makes legal pre-
dictions regarding patent and other intellectual property cases. As discussed in
Section 4.7, its legal predictions are based on, among other things, analysis of lit-
igation participant-and-behavior features extracted from an extensive corpus of IP
cases.

Apparently, the creators of Lex Machina intended to incorporate more seman-
tic information about the cases’ merits. According to Surdeanu et al. (2011), the
authors “would like to combine both merits of the case as well as prior factors [i.e.,
participant-and-behavior features] into a single model.” Whether, and the extent to
which, features directly related to the substantivemerits of a case have been included
in the current version is not clear.

12.2.3. Ravel

Ravel (Ravel Law, 2015a), founded by Stanford Law School graduates, and the library
of Harvard Law School are engaged in a joint effort to scan a large portion of
U.S. caselaw and make the case texts accessible in a digital format along with Ravel’s
visual maps graphically depicting how one case cites another in connection with a
legal concept (Eckholm, 2015).

On Ravel sites currently available to the public, for example, a lawyer planning
to challenge the 2010 Citizens United decision, which permitted corporations to
make independent political expenditures, can enter “campaign finance” and see in
schematic form the major cases at the district, appellate and Supreme Court levels
that led up to the 2010 decision and the subsequent cases that cite it. (Eckholm,
2015)

The output includes a list of n cases relevant to “campaign finance,” where a “case
is ‘Relevant’ when it’s important in the context of your specific search terms” (Ravel
Law, 2015d). Each case is represented with excerpts from the opinion in which the
search terms are highlighted. The accompanying visual map, a kind of structured
citation network (see Section 2.6), represents as circles cases dealing with “campaign
finance” such as the Citizens United case. The circles’ sizes indicate how often the
case was cited. The lines represent citations with the lines’ thickness indicating the
“depth of treatment,” perhaps a measure of the extent to which a case is cited or
discussed in the citing opinion. The citation network is structured along the x-axis
to show a chronology in years and along the y-axis broken into a court system hierar-
chy: state courts, district courts, courts of appeals, and the U.S. Supreme Court for

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 354 — #5

354 Connecting Computational Reasoning Models and Legal Texts

this particular query. Alternatively, the y-axis can show cases by relevance with more
relevant cases at the top.

With the graphic display, one can trace citations from a seminal case such as
Buckley v. Valeo to more recent cases. As one clicks on a case, it appears at the top
of the case list (Ravel Law, 2015c).

Ravel also provides fee-based analytical services focusing on judicial history and
past cases. Given a query, for instance regarding certain kinds of motions, the pro-
gram reports “how a particular judge has responded to [those kinds] of motions in
the past,” “the cases, circuits, and judges [a] judge finds most persuasive,” “the rules
and specific language [a] judge favors and commonly cites,” and “distinctions that
set [a] judge apart.” Case analytics include information about specific paragraphs or
sentences and how they have been referred to in subsequent decisions (Ravel Law,
2015b).

12.3. bridging legal texts and computational models

The new legal apps on the market introduce innovative tools and user interfaces that
will be important for cognitive computing. For example, Ravel’s graphical interface,
structuring citation networks in terms of chronology and court hierarchy, introduces
legal researchers to the virtues of citation networks on a large scale. Ravel’s plan to
include statutes in its citation networks will make the networks even more useful.
Incidentally, Ravel’s citation networks deliver on the promise of the SCALIR project
(Rose and Belew, 1991), as discussed in Section 7.9.3, and of the statutory citation
networks discussed in Sections 2.6 and 11.6.3.

The new legal apps also incorporate ML and legal outcome prediction. Ross
employs ML to update confidence levels in the relevance of materials returned
in answering questions. Lex Machina predicts outcomes of legal problems based
on features extracted directly from the texts of decisions. Both Ross and Lex
Machina exploit histories of judicial decision-making to assist users in anticipating
how a judge will react to an argument. It appears, however, that the features Lex
Machina employs for prediction do not directly take into account substantive aspects
of cases.

If and when a legal app can take into account substantive features extracted from
case texts in making arguments or predicting legal outcomes, the field will have
taken a big step forward. With their assembled corpora and techniques for extracting
information from texts, Lex Machina, Ross, and Ravel are well-positioned to take
this step, but it does not appear that they have done so yet. As explained below,
computational models of legal reasoning can help.

12.4. cognitive computing apps for testing legal hypotheses

This section explores how to achieve a new kind of CCLA by linking some of Part
I’s computational models of legal reasoning (CMLRs) and Part II’s techniques for

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 355 — #6

Cognitive Computing Legal Apps 355

extracting argument-related information from legal texts and using it for conceptual
information retrieval.

In these new legal apps, computational models of legal reasoning will serve as
a bridge between corpora of legal texts and human users solving realistic legal
problems. The Apps probably will not be able to annotate logical rules or seman-
tic networks in sufficient detail to enable all of the CMLRs described in Part I
to run directly from texts. Probably, however, they will be able to identify the
portions of texts that contain the legal rules, legal holdings and findings of fact,
arguments justifying conclusions, and explanations of reasons, as well as particular
legal factors and evidence factors, to support a cognitive computing collaboration
with users.

Equipped with CMLRs, CCLAs will employ this information extracted from legal
texts to assist humans to investigate and answer legal questions, predict case out-
comes, provide explanations, and make arguments for and against legal conclusions
more effectively than is currently feasible with existing technologies.

12.4.1. A Paradigm for CCLAs: Legal Hypothesis-Testing

As explained in Chapter 1, cognitive computing should support collaborative intel-
ligent activity between humans and computers in which each does what it can do
best. In introducing the commoditization of legal services, the last stage in Susskind’s
evolution of legal work, that chapter left an open question: “If process engineering of
legal services is rethinking how to deliver ‘very cheap and very high quality’ solutions,
who or what will be responsible for tailoring those solutions to a client’s particular
problem?”

Formerly, it was a goal of expert systems development in AI to generate
rules embodying a firm’s expertise and ways of solving problems. As in Water-
man’s expert system of Section 1.3.1, one would attempt to extract heuristic rules
from manual analysis of legal texts. Equipped with such rules, given a new
problem, the system could apply the rules to tailor a solution to that prob-
lem. Or at least that was the intention. The effort proved largely intractable,
however; the knowledge representation bottleneck stymied the expert systems
approach.

Cognitive computing has a similar goal, to achieve a kind of mass customization
of legal advice, but shifts the focus to the human user by striving for an intelligent
computer–human collaboration. That approach raises a similar question, however:
what kind of collaboration and how will it be achieved?

Here is one answer. Instead of extracting production rules, the aim is to annotate
patterns of analysis and argument that can guide human’s problem-solving efforts.
In particular, the annotated patterns of analysis and argument can help humans to
frame, test, and evaluate legal hypotheses relevant to solving their problems. Here,
hypothesis means a prediction, in the form of a rule-like generalization based on

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 356 — #7

356 Connecting Computational Reasoning Models and Legal Texts

substantive legal considerations, of how a legal issue should or may reasonably be
decided given certain conditions. By “test” and “evaluate” legal hypotheses, I mean
not only to assess whether the prediction is correct but also to retrieve examples
and counterexamples of the hypothesis for consideration and to consider arguments
pro and con. These arguments may lead the human to revise and reevaluate the
hypothesis. They could also help the human to fashion the strongest arguments in
favor of a position that an advocate must take in support of a client’s position while
fully apprising him of the counterarguments.

In helping humans to frame, test, and evaluate substantive legal hypothe-
ses, the envisioned CCLAs would engage humans in a paradigmatic collabora-
tive activity. Humans are better at conceiving of interesting hypotheses, which,
if confirmed, will have strategic or tactical ramifications for the legal positions
they take and the manner in which they will justify them. Computers will
quickly analyze huge text corpora in search of evidence relevant to a human’s
hypothesis.

The legal apps could engage users in an iterative process of reformulating a
hypothesis both in express terms and via selecting case examples that confirm or
contradict the current hypothesis. The CCLA will not output “the answer” but out-
put tentative conclusions, summarizing the evidence supporting or contradicting
the hypothesis in its current form. It will construct arguments about the hypothesis
based on the evidence, including listing examples that appear to satisfy the query
and confirm the hypothesis, and also point out apparent counterexamples that dis-
confirm the hypothesis, and near misses, examples that nearly satisfy the antecedents
of the rule-like hypothesis.

Ultimately, human users will have to read the selected examples, counter-
examples, or near misses. The legal app, however, will frame its presentation around
the hypothesis. This would focus the reader on documents selected as substantively
most relevant to the hypothesis. In addition, the App would abstract and summarize
the relevant documents in a way that made clear their relationship to the query or
hypothesis.

The remainder of this section explains how a new CCLA could help humans
to formulate a variety of substantive legal hypotheses and to test and evaluate
them against a corpus of legal documents. The targeted types of legal hypothe-
ses are explained and illustrated. We sketch how a CCLA could operationalize the
hypotheses into subsidiary queries and interpret the results.

Extended examples in two domains illustrate the process of translating hypotheses
into queries for conceptually relevant cases and applying an appropriate computa-
tional model of legal argument to the retrieved information in order to assess the
hypothesis and explain it with arguments and counters.

The next section presents a critique of the sketch, identifying research chal-
lenges that still need to be solved, and underscoring some general limitations of
the approach.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 357 — #8

Cognitive Computing Legal Apps 357

12.4.2. Targeted Legal Hypotheses

When attorneys consider the various legal issues a factual scenario raises, they likely
consider potential arguments and counters for each issue and frame hypotheses
about which side should succeed. Instinctively attorneys consider both the reasons
in support of reaching a particular outcome and the reasons against it. These reasons
include favorable facts that an attorney has proved or believes s/he can prove, as well
as unfavorable facts the opponent has proved or may prove.

An attorney may thus hypothesize that a side should prevail on an issue where cer-
tain conditions favor that conclusion even though other conditions favor a contrary
conclusion. The basic form of such a hypotheses is shown in Figure 12.1.

In these formulations, [side] is a generic party, say plaintiff or defendant. The issue
[x] can be a legal claim, element of the claim, or the application of a legal rule or
rule requirement. Conditions [y] and [z] can refer quite generally to a holding of law,
finding of fact, legal factor, evidence factor, type of evidence, or statement of fact.

In either formulation, the hypothesis is a prediction about the decision of a legal
issue, that is, about the outcome of a legal claim, element, legal rule, or requirement
given the conditions specified in the hypothesis, including holdings of law, find-
ings of fact, evidence factors, types of evidence, statements of fact, or combinations
thereof, that favor that side and despite the conditions that favor the opposing side.

The proposed legal app is intended to assist human users in testing the two types
of hypotheses against a corpus of cases. We are not attempting to model analyzing
the legal problem based on first principles or on statutory texts independently of
case decisions applying them. Thus, the predictions should be seen as relative to
and limited by the information in a given set of legal case texts.

In this sense, the two formulations involve predictions that are partly empirical
and partly normative. Formulation [1], a should-hypothesis, is a prediction that the
outcome of the decision should be as specified, given the information contained
in a given a set of legal cases. This means that, in terms of some underlying com-
putational model of legal argument and the cases in that set, it determines if the
prediction can be confirmed given the strength of the case-based legal arguments
pro and con. Formulation [2], a can-hypothesis, predicts merely that the outcome of
the decision can be as specified given a set of legal cases. It is a much weaker predic-
tion than a should-hypothesis and can be satisfied by even a single case that satisfies
the condition and has the specified outcome.

With the envisioned legal app, users will be able to frame and test hypotheses in
the above formats, like the ones illustrated in Figures 12.2 and 12.3. These hypotheses

figure 12.1. Two templates for targeted legal hypotheses

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 358 — #9

358 Connecting Computational Reasoning Models and Legal Texts

figure 12.2. Sample legal hypotheses CCLAs should target (from the trade secret
misappropriation domain)

figure 12.3. Sample legal hypotheses CCLAs should target (from the V/IP domain).
Issues in italics.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 359 — #10

Cognitive Computing Legal Apps 359

are drawn from two of the legal domains previously discussed: trade secret law,
introduced in Section 3.3.2, and the V/IP domain, introduced in Section 5.8.

The figures suggest how computational models of legal reasoning could be
applied to evaluate hypotheses. In Figure 12.2, the hypotheses are almost all should-
hypotheses (formulation [1]). In order to evaluate them, one could apply a model
of legal-factor-based argument and prediction, functionally similar to the VJAP
model (Section 5.7). As discussed in Section 12.4.4, such a model can evaluate
should-hypotheses predicting what an outcome should be as well as can-hypotheses
(formulation [2]) predicting what the outcome can be. For example, hypothesis (a)
will yield an argument that plaintiff should win while (g) will focus on an argument,
if any, that a defendant could win. An argument for (g) would be a counterargu-
ment to that in (a). In generating the argument for (a), the App would consider and
respond to counterarguments like that of (g).

In Figure 12.3, in contrast, all of the hypotheses are can-hypotheses. One could
apply a computational model of evidentiary legal reasoning to evaluate these
hypotheses, for example, one like the DLF (Section 5.8). For reasons discussed in
Section 12.4.4, such a descriptive model of argument would not be able to evaluate
should-hypotheses without more information.

As described next, hypotheses like those in Figures 12.2 and 12.3 will be operational-
ized by translating them into queries employing conceptual legal criteria like those
illustrated in Section 11.5.2. As we saw there, the conceptual criteria are expressed in
terms of type systems and annotation methods comparable to the ones described in
Part II and Chapter 11.

There are, of course, many other forms of substantive legal hypotheses that
humans may wish to evaluate against corpora of legal documents. For instance,
an empirical legal scholar may seek to confirm a hypothesis that fraud plays a
central role as an instrumental rationale and substantive claim in cases in which
courts pierce the corporate veil to hold shareholders liable (see Oh, 2010). The new
App cannot assist with confirming that kind of hypothesis unless and until one can
develop a way to operationalize such a hypothesis for testing against a corpus of cases.

12.4.3. Operationalizing Hypotheses

Given a hypothesis of the form shown in Figure 12.1, retrieving cases relevant to the
hypothesis is the kind of conceptual AR that a system like the LARCCS prototype of
Section 11.5 would be designed to handle.

First, there is the challenge of helping human users to formulate a hypothesis
to test. Eliciting such hypotheses from users presents similar challenges to those
discussed in Section 11.5.5 for eliciting users’ argument needs in conceptual infor-
mation retrieval. A well-designed user interface will need to apprise humans about
the targeted kinds of hypotheses it can process. The system will present templates
for the two hypothesis formulations above and provide example hypotheses of each

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 360 — #11

360 Connecting Computational Reasoning Models and Legal Texts

type. It will support human users in formulating similar hypotheses using a com-
bination of visual aids, text processing, tools for editing sample hypotheses, and
dynamically generated menus presenting the system’s version of a user’s inputs for
confirmation.

Given a hypothesis, the legal app will construct subsidiary queries for cases where
courts have held for side on issue x where conditions y even though conditions z.
Operationalizing hypotheses like those in Figures 12.2 and 12.3 by translating them
into subsidiary queries is a key step.

The targeted subsidiary queries are very like the conceptual queries of
Section 11.5.2. They seek cases with propositions playing particular argument or
legal roles. The kinds of argument-related and legal-related information available for
expressing the conditions y and z include the expanded list of types in Section 11.5.3,
namely propositions stating:

– legal rules or conclusions about whether legal rules’ requirements are satisfied,
– factual findings, evidence factors, evidence or evidential reasoning,
– applicable legal factors or related policies, values, and reasoning, or
– case procedures.

In particular, hypotheses about trade secret law like those in Figure 12.2 would be
translated into conceptual queries for legal factors and argument roles like those in
Figure 11.6. For example, hypothesis (a):

The issue of trade secret misappropriation should be decided for plaintiff
where plaintiff’s former employee brought product development information to
defendant.

could be operationalized, in part, with a conceptual query like:

What cases are there with a Legal Ruling or Holding of Law re Legal Rule re
Trade-Secret-Misappropriation where Legal Factor: F7 Brought-Tools (P)?

As another example, hypothesis (g):

The issue of trade secret misappropriation can be decided for defendant
where plaintiff’s former employee brought product development information to
defendant.

would involve a more specific query like:

What cases are there where defendant won a Legal Ruling or Holding of Law
re Legal Rule re Trade-Secret-Misappropriation where Legal Factor: F7 Brought-
Tools (P)?

These are conceptual queries 1 and 2, respectively, in Figure 11.6.
Hypotheses about the V/IP domain like those in Figure 12.3 would be translated

automatically into conceptual queries for cases with propositions playing particular

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 361 — #12

Cognitive Computing Legal Apps 361

argument roles like the ones in Figure 11.5. For example, the condition in hypothesis
(a) in Figure 12.3:

Plaintiff can succeed on the issue of a vaccine injury claim for compensation where
the vaccine was MMR vaccine and the injury was intractable seizure disorder.

could be expressed with query 4a in Figure 11.5:

What Evidence-Based Findings have there been that: measles, mumps & rubella
(MMR) vaccine causes intractable seizure disorder?

A module like LUIMA-Search would translate formulated hypotheses like the
above into subsidiary conceptual queries as in Section 11.5.2 and translate the queries,
in turn, into sets of constraints like that in Figure 11.2 using the argument types of
Section 11.5.3. The search and rerank modules would then retrieve and rank cases
as described in Sections 11.3.1 and 11.3.2. This presupposes the same kind of connec-
tion to a legal IR system as described in Section 11.5.1 in which argument-related
information will have been annotated automatically in the cases in a corpus of texts
retrieved from the CLIR system.

12.4.4. Interpreting Hypotheses

The process described thus far is a kind of legal hypothesis-driven conceptual
information retrieval. The legal app will assess the results of the queries to deter-
mine whether instances of the targeted hypothesis have been retrieved, which sides
the instances favor, that is, whether the retrieved cases are positive, negative, or
mixed instances of the hypothesis, and thus, whether or not the results appear
to confirm the hypothesis. The App may be able to accomplish more than that,
however.

Where a computational model of argument from Part I applies to the annotated
features of cases, identifying legal factors or other argument-related information, the
App may construct legal arguments in support of or against the hypothesis and eval-
uate the hypothesis in light of the competing legal arguments. In doing so, the App
will apply argument schemes with defeasible legal rules and cases, legal factors, and
underlying values.

The App will confirm or question the user’s hypothesis and explain why in terms
of the arguments. Based on its analysis, the App will offer the human user various
options including modifying the hypothesis. In effect, the App will assist the user in
exploring a space of plausible hypotheses concerning a legal claim or issue and in
collaboratively testing and revising the hypotheses. The next section illustrates this
collaborative hypothesis-testing, first with the VJAP model and then with the DLF
model.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 362 — #13

362 Connecting Computational Reasoning Models and Legal Texts

Collaborative Hypothesis-testing with a Predictive Argument Model
As an example of collaborative hypothesis-testing with a computational legal argu-
ment model like VJAP (Section 5.7), consider hypothesis (d) of Figure 12.2, a
should-hypothesis:

The issue of a claim of trade secret misappropriation should be decided for plain-
tiff where plaintiff took security measures concerning his/her unique product and
the defendant agreed not to disclose the information even though the plaintiff had
disclosed the information in a public forum.

Using a legal app interface that offered menu-support and accepted natural lan-
guage inputs, a user could input a legal hypothesis like this as a query and flag it as
a hypothesis to test. The program would annotate the text of the query in terms of
the expanded list of argument types in Section 11.5.3, including the type for Legal
Factors. The program would translate the natural language formulation annotated
with instances of Legal Factor types into a list of specific legal factors. Where there
is uncertainty about the interpretation of the hypothesis, the App could offer menu
choices indicating its top n interpretations of the terms of the user’s hypothesis for
the user’s confirmation.

Having confirmed a specific interpretation of the user’s hypothesis, the program
would begin a process to test it. First, the program would decompose the hypoth-
esis into queries for cases with the specified trade secret domain legal factors and
argument roles such as query 3 in Figure 11.6:

3.What cases are there with a legal ruling or holding of law re claim of Trade-Secret-
Misappropriation where legal factors: F15 Unique-Product (P), F4 Agreed-Not-To-
Disclose (P), F6 Security-measures (P), F27 Disclosure-in-public-forum (D)?

The legal app would access a database of cases against which to apply these
queries. Conceivably, the database could be assembled at run-time from a legal IR
program’s general corpus using a generalization of query 3 such as:

trade secret misappropriation claims where plaintiff took security measures to pro-
tect the confidential information, plaintiff’s product was unique in the market,
and defendant agreed not to disclose the information, but plaintiff disclosed the
information in a public forum.

The legal app would annotate the output of the legal IR program for the query at
run-time in terms of Legal Factors and the other argument types from the expanded
list. Depending on the efficiency of annotation, it might focus on a subset of types
apparently relevant to the hypothesis and related queries. Alternatively, it would
employ a previously assembled and annotated corpus of trade secret misappropri-
ation case opinions, perhaps supplemented at run-time with updating queries to a
legal IR program. Conceivably, users could specify jurisdictions and time frames to
target the database.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 363 — #14

Cognitive Computing Legal Apps 363

The annotation would result in a database of sentences and related cases indexed
by sentence-level types, including the general Legal Factor type and the trade-secret-
claim-specific legal factors. We assume that the system can interpret sentences that
express legal rulings or holdings and/or evidence-based findings well enough to know
which side is favored by the ruling, holding, or finding. Phrases involving plaintiff or
defendant terms and indicating that a side “won,” “prevailed,” “has succeeded,” and
others will probably be treated as standard legal formulations (Section 6.8). Interpret-
ing more complex instances of these sentence types may raise issues of attribution
and polarity discussed in Section 12.5.1.

The Legal App would apply query 3 to the annotated database, retrieve cases that
satisfy the queries, and analyze the results. Initially, the analysis might simply com-
pare the numbers of cases responsive to each query. While there may be no cases in
which plaintiff won a claim for trade secret misappropriation despite the presence
of a disclosure in a public forum (Factor F27 Disclosure-in-public-forum (D)) more
likely, there is a mix of cases, some won by plaintiff and some won by defendant.

The legal app could issue a preliminary report of the numerical comparison: n pro-
plaintiff instances consistent with the hypothesis and m pro-defendant ones contrary
to the hypothesis. The report would include a proviso that it is based only on the cur-
rent database of n trade secret cases (within a particular jurisdiction or time frame).

At that point, the App could offer the user some options including:

1. Modify database (App/User): Expand or change the database to search for
additional instances relevant to the hypothesis.

2. Modify hypothesis (App/User): Change the hypothesis and rerun the searches.
3. Make legal argument (App/User): Construct a legal argument in support of or

against the hypothesis.
4. Evaluate hypothesis (App/User): Evaluate hypothesis in light of the legal

arguments.

The Modify database option assumes that there are available options concerning
the database. For instance, one could specify jurisdictions or time ranges that restrict
the database. Perhaps the search could include additional textual corpora or the IR
query could be revised. The parenthetical “(App/User)” indicates that either the App
or the user can suggest modifications to the database.

Regarding the Modify hypothesis option, typical changes would be to make the
hypothesis more general or more specific by subtracting or adding legal factors
or, possibly other facts, to the query constraints. In this way, the user’s hypothesis
becomes a hypothesis about the legal significance of a disclosure in a public forum
in a more or less fully specified factual scenario, for instance:

(d′) The issue of claim of trade secret misappropriation should be decided for plain-
tiff where defendant agreed not to disclose the information, even though plaintiff
disclosed the information in a public forum.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 364 — #15

364 Connecting Computational Reasoning Models and Legal Texts

Hypothesis (d′) is less specific than hypothesis (d) in that it involves only legal factors
F4 Agreed-Not-To-Disclose (P) and F27 Disclosure-in-public-forum (D).

Another typical modification is to focus the hypothesis on particular legal issues
relevant to the claim. For instance, given the VJAP model of a trade secret misappro-
priation claim (Figure 5.10), and a scenario involving F4 and F27, a natural focus is
on the issues of whether the information is a trade secret and whether the informa-
tion was misappropriated, or more specifically, was there a confidential relationship
and did the plaintiff maintain secrecy as in hypothesis (d′′) :

(d′′) The issue ofmaintain secrecy in a claim of trade secretmisappropriation should
be decided for plaintiff where defendant agreed not to disclose the information, even
though plaintiff disclosed the information in a public forum.

The Make legal argument option would invite the App (or the user) to make legal
arguments in support of and against the current hypothesis. Using a computational
model of argument like VJAP (or the CATO or IBP models), the App could make
legal-factor-based or value-based arguments for and against the hypothesis given the
fact situation.

For instance, in a scenario associated with hypothesis (d), plaintiff took security
measures concerning its unique product and the defendant agreed not to disclose
the information even though the plaintiff had disclosed the information in a pub-
lic forum. That is, the applicable factors include F4 Agreed-Not-To-Disclose (P), F6
Security-measures (P), F15Unique-Product (P), and F27Disclosure-in-public-forum
(D). By inputting these factors to a model like VJAP, the App could construct argu-
ments similar to that shown in Figure 5.13 illustrating an argument for the Dynamics
case, which is an instance of hypothesis d.

If the user specifies an argument, the program would attempt to respond to it, but
the inputted argument would have to be in a form the system could understand in
terms of the applicable CMLR or argument. For instance, the user could specify a
case or fact situation as a counterexample to which the App would try to respond
with a distinction.

The Evaluate hypothesis option is related to the previous one. Basically, the App
could evaluate the hypothesis, that is, predict the outcome of the related factual
scenario, in light of the applicable legal arguments pro and con. Using the VJAP
model (or CATO or IBP) the App would predict an outcome for the fact situation
and justify it in terms of the arguments. The user option allows the user to change
the predicted outcome and direct the App to evaluate it.

The legal arguments for these last two options, Make legal argument and Evaluate
hypothesis, employ the argument schemes supported in the computational model of
argument. That would include arguments by analogy to past cases consistent with
the hypothesis, distinguishing cases that are contrary to the hypothesis (i.e., counter-
examples), and considering effects on underlying values of cases that are positive
or negative instances of the hypothesis. As illustrated in the Dynamics argument

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 365 — #16

Cognitive Computing Legal Apps 365

in Figure 5.13, the justification identifies cases and arguments in support of the
prediction, but also counterexamples. It attempts to distinguish them or otherwise
downplay their significance based on legal factors, underlying values, and the dele-
terious effects on values of an opposite conclusion in the current scenario. Based on
the counterexamples, the App could also identify near miss hypothetical variations
of the hypothesis that could affect the outcome given slightly different facts as in
Ashley (1990).

Collaborative Hypothesis-Testing with a Descriptive Evidentiary
Argument Model
In an evidentiary legal argument domain like the V/IP domain, a legal app could
also process hypotheses like those in Figure 12.3, for instance:

a) Plaintiff can succeed on the issue of a vaccine injury claim for compensa-
tion where the vaccine was MMR vaccine and the injury was intractable seizure
disorder.

As noted, these can-hypotheses, patterned after form [2] in Figure 12.1, are different
from the should-hypotheses in Figure 12.2 dealing with legal factors. Instead of “An
issue should be decided for plaintiff” or “a plaintiff should succeed,” they are phrased
as “a plaintiff can succeed” given the condition described in the hypothesis, in the
sense of “some plaintiffs have succeeded.” The differences reflect differences in the
underlying computational models of argument and the scope of legal arguments
they model.

A descriptive computational model of evidentiary legal argument accurately rep-
resents a court’s factual holdings, supporting and contradicting reasons, and legal
decisions about whether legal rules’ requirements have been satisfied. The model
does not support arguing about the meaning of the legal rule requirements.

Conceivably, a descriptive model of evidentiary legal argument could provide a
basis for prediction. “[T]he Corpus supplies data for . . . [using] logical structure to
predict outcomes in similar cases or to formulate arguments for use in similar cases”
(Walker et al., 2011, pp. 303, 329). An extensive corpus of cases annotated in terms of
such amodel would provide a database of successful and unsuccessful paths through
a rule tree along with the associated arguments. These paths can be aligned across
cases based on the particular rules and requirements. In this respect, they are similar
to the EBEs of GREBE (see Section 3.3.3), another model that traces the reasoning
of a judge in determining whether a legal rule’s requirements have been satisfied.

Given such a corpus, a program could trace a path from the assumed facts and
sub-issue conclusions of the hypothesis to a desired conclusion. The rule tree indi-
cates the rule requirements that remain to be satisfied. The cases indicate known
successful and unsuccessful paths that have been tried and could provide frequen-
cies with which a particular path or segment in an elaborated rule tree has been tried
or been successful.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 366 — #17

366 Connecting Computational Reasoning Models and Legal Texts

The corpus would also provide a detailed track record of how particular triers
of fact, that is, particular judges or special masters, have decided specific issues in
the past. It records the judge’s reasons in selecting and interpreting evidence and
resolving conflicting evidence. For an attorney facing a similar problem scenario,
the judge’s reasoning is instructive as an example of the kind of evidence the attorney
will need to produce and the kind of argument the attorney will need to construct. It
is also instructive as an example of how this particular trier of fact, for instance, the
Special Master in the Casey decision, has dealt with certain issues, evidence, and
even expert witnesses. Thus, applying the DLF-like model to legal decision texts
could potentially enable the Lex Machina project to find and apply fine-grained
information for predicting how a particular judge would decide a particular issue.

Based on this information in the corpus, given a hypothesis, a legal app could
confirm or disconfirm the hypothesis and summarize the statistics. If the hypothe-
sis is confirmed, the legal app could point to the successful paths and arguments
consistent with the hypothesis. It could suggest arguments based on those positive
instances and caution the user about any exceptions and unsuccessful arguments. If
it disconfirms the hypothesis, the App could point to the exclusively negative paths.

An interesting question is whether, using a descriptive argument model, the legal
app can predict that the plaintiff should win an issue given the facts posed in the
hypothesis. Here, “should” is used in the combined normative and empirical sense
of a form [1] should-hypothesis. While it makes sense to pose a normative hypothe-
sis for confirmation with such a model, the subsidiary queries would be, in essence,
whether the findings of fact satisfy the requirements of the relevant legal rules defin-
ing a claim or issue. It would be difficult in such a model to evaluate the normative
hypotheses in the absence of arguments by analogy to cases about the meaning of
legal rule requirements.

Descriptive models are aimed at capturing another kind of normative informa-
tion underlying the fact trier’s evidentiary reasoning. As noted, such a model records
whether a decision in a case is a conclusion of law or a finding of fact, and how it
relates to other decisions in the case. The model also records the decision-maker’s
reasons in the decision-maker’s own language with a representation of how they
affect the decision, that is, whether they support it, contradict it, and how strongly.
For instance, Table 12.1 shows examples of evidentiary reasons in Special Masters’
decisions annotated in the DLF representations of three cases, the Casey (n. 1),
Howard (nn. 2–5), and Stewart (n. 6) cases.1

As the table illustrates, the reasons are each instances of patterns of a kind of policy-
informed “commonsense” inference about evidence or disease causation that one
would expect to see across multiple evidentiary decisions. At the right of each reason,

1 Casey v. Secretary of Health and Human Services, Office of Special Masters, No. 97-612V, December
12, 2005; Howard v. Secretary of the Department of Health and Human Services, Office of Special
Masters, No. 03-550V March 22, 2006; Stewart v. Secretary of the Department of Health and Human
Services, Office of Special Masters, No. 06-287V, March 19, 2007.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 367 — #18

Cognitive Computing Legal Apps 367

table 12.1. Examples of DLF evidentiary reasons in Special Masters’ decisions (left)
and possible underlying policies or principles (right)

Evidentiary reason of trier of fact Possible underlying principle or policy

1. “[B]ecause ataxia, encephalitis, and
certain other symptoms characteristic of a
natural varicella infection were also seen
after the vaccination with the attenuated
varicella virus, it is plausible that the varicella
vaccine caused those symptoms.”

Observing symptoms characteristic of a
natural infection after a vaccination with
the attenuated virus increases the plausibility
that the vaccine caused those symptoms.

2. “Dr. Katz’ comments concerning Exs. 43
and 44 at the hearing . . . were so brief as to
be completely unenlightening.”

An expert’s analysis should be commensurate
with the complexity of the topic.

3. “Dr. Katz ‘declined the opportunity to
respond to Dr. Berger’s critique.’ ”

If a speaker has an opportunity to respond to a
contradictory comment but declines to do so,
a listener may assume that the speaker has no
reasonable response to make.

4. “[I]t seems unlikely that Sierra could really
have been ‘withdrawn’ or ‘depressed’ for six
weeks, and had ‘puffy’ hands and feet for
more than three weeks, and yet petitioner
did not take the infant to the doctor during
that time period.”

If an infant had really presented troublesome
symptoms over a period of weeks, a parent
would have likely sought medical help.

5. “[T]he petitioner’s descriptions of Sierra’s
symptom history have changed more than
once.”

If a child had really presented symptoms,
one would expect that the description of the
symptoms would remain constant.

6. “The appropriate temporal framework for
causation between viruses and cerebellar
ataxia runs from 1 to 21 days.”

As the time interval increases between
vaccination and injury (i.e., the onset
interval) beyond the expected, the likelihood
of demonstrating causation may decrease.

the figure shows an expression of the possible principle or policy underlying the
reason.

If claim-specific instances of such reasons and evidence factors are sufficiently
stereotypical across cases in that domain or if they are instances of more general
policies or values underlying evidential reasoning that are made explicit, then cases
may be annotated as such, compared automatically, and the comparisons could be
factored into the predictions as a kind of combined normative and empirical gloss.

12.5. challenges for cognitive computing legal apps

A legal app that collaborates with humans to frame, test, and evaluate legal hypothe-
ses should be possible soon. As the above sketch suggests, if argument-related
information can be successfully annotated automatically, existing computational

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 368 — #19

368 Connecting Computational Reasoning Models and Legal Texts

models of legal argument could work with textual descriptions of hypotheses and
cases, predicting outcomes and supporting them with arguments.

That if is the first of three substantial research challenges to address before the
goal of collaborative hypothesis-based querying and testing can be realized. To what
extent can legal argument-related information be extracted from texts, including
legal factors, evidence factors, and sentence roles in legal argument? A second major
challenge is whether there will be enough manually annotated training data for ML
and automatic annotation. Third, it will be a challenge to design an interface in
which users can specify hypotheses as well as queries. Aspects of these challenges
have already been discussed in the preceding chapter but will be revisited here in
light of the goal to support hypothesis-testing.

12.5.1. Challenges: Automatically Annotating Legal Argument-Related
Information

The work reported in Chapters 9 through 11 provides reason for optimism that
argument-related information can be annotated automatically sufficiently well to
support hypothesis-testing.

We have already seen a number of examples. As described in Section 10.3,
Mochales and Moens have applied ML to automatically identify propositions in
a legal corpus as argument premises and conclusions, with F1-measures of 68%
for premises and 74% for conclusions. Using knowledge-engineered rules, they
identified nested argument structures with 60% accuracy. Feng and Hirst have
automatically annotated argument schemes such as argument by example with
accuracies ranging from 63% to 91% (Section 10.3.5). In an evaluation described
in Section 10.5.4, the LUIMA team has annotated automatically two legal argument
roles that sentences play, LegalRuleSentence and Evidence-BasedFindingSentence,
with F1-measures of 68% and 48% (Bansal et al., 2016). The SMILE program has
identified legal factors automatically in trade secrets misappropriation cases with
lower F1-measures averaged across factors of 26% to 28%, but well enough to improve
IBP’s predictions over an informed baseline by 15% (Section 10.4). In addition, the
SPIRE program reduced expected search length by reordering cases using a corpus
of factor texts (Section 7.9.2).

Although not aimed at annotating cases, the techniques for classifying statutory
provisions and extracting functional information in the Dalos project (Section 9.3),
and from quantitative construction regulations (Section 9.6), or learning from train-
ing data based onmultiple states’ statutes (Section 9.7.3), also suggest that annotating
legal factors can work. Even automated annotation and extraction of logical rules has
had some success (Section 9.5). Legal factors should be easier than logical rules to
annotate automatically. Factors are like the antecedents of rules and thus simpler
than rules. On the other hand, the case texts in which factors are to be annotated
may be more varied than statutory texts.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 369 — #20

Cognitive Computing Legal Apps 369

While promising, given the range of these results, clearly more work is required.
There are four pressing needs, namely a need to deal with certain issues of attribu-
tion, to distinguish the polarity of certain propositions, to acquire certain domain-
specific concepts and relations, and, crucially, to generate more manually annotated
training instances.

Attribution
When justifying a hypothesis based on cases, it is important that a legal app be able
to distinguish among a judge’s conclusions and statements a judge attributes to the
parties or witnesses. “Attribution . . . is the problem of determining who believes a
stated proposition to be true” (Walker et al., 2015a). A given sentence in a decision
may report a party’s allegation, an expert witness’s testimony, a document exhibit’s
text, a judge’s legal conclusion or finding of fact, or any of the above but from a
cited case.

The CCLA will need to determine whether in expressing a proposition, a judge
accepts it as true (Walker et al., 2015a). Parties’ statements are often just assertions
they would like to support. The fact that a judge attributes to a party a statement that
looks like a legal factor demonstrates that the topic was discussed, but it does not
show that the judge determined the factor to be present. A judge may quote witness
assertions as evidence, but the judge may cite competing evidence before indicating
his/her decision.

Here is an example illustrating the kind of distinction based on attribution that
LUIMA cannot yet draw but needs to. Consider the same two sentences, S2 and
S3 from the Werderitsh decision, used at the beginning of Chapter 11 to illustrate
sentences responsive to query Q2, “Have there been cases where it was held that
hepatitis B vaccine can cause MS?,” and a new sentence, S4:

S2: “The undersigned holds that hepatitis B vaccine caused or significantly aggra-
vated petitioner’s MS.”

S3: “The undersigned concludes that the medical theory causally connecting the
vaccinations and petitioner’s injury is that Mrs. Werderitsh, who is genetically pre-
disposed to developing MS, was exposed to the environmental antigen of two
hepatitis B vaccinations, producing inflammation, self antigens, and a sufficient
number of T-cells to have an autoimmune reaction later diagnosed as MS.”

S4: (New) “Dr. Leist’s conclusion that hepatitis B vaccine, since it failed to produce
antibodies inMrs.Werderitsh, could not have caused or exacerbated herMS ignores
the other three types of MS that Dr. Martin described for which antibodies are
irrelevant.”

A program that understands to whom to attribute an assertion could make use of
such information in reranking. If a user sought prior cases with holdings regarding
particular assertions, sentences like S2 and S3 would be preferred over S4. They are

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 370 — #21

370 Connecting Computational Reasoning Models and Legal Texts

all responsive to Q2. They all refer to “hepatitis B vaccine” “cause” and “MS.” S4
would be less useful a response to Q2, however, because it reports a conclusion of
Dr. Leist, an expert witness, rather than of the special master (as indicated in S2
and S3 by “The undersigned holds” or “concludes”). If the LUIMA system could
recognize the attribution of the statement to an expert witness in S4 and infer that
S4 is not an evidence-based conclusion by the special master (Walker et al., 2015a),
it could distinguish between S2 and S3, on the one hand, and S4 on the other.

As illustrated in Walker et al. (2015a), attribution also involves a range of subtler
issues with implications for reranking. In the example, the special master criticizes
Dr. Leist’s conclusion in S2 as “ignoring” information of another expert, Dr. Martin.

Conceivably, a system should not only recognize the attribution of the statement
to an expert witness but also the negative polarity of the assertion. These inferences,
however, can be quite subtle. Dr. Martin, like Dr. Leist, is the losing respondent
government’s witness. In other words, the special master is positively disposed to
some conclusions of an expert witness of the losing side. One cannot assume that
just because an expert witness testified for the side of the loser, the special master
accepted none of his/her assertions.

In order to identify speakers and reason about their beliefs in statements attributed
to them, a program will need to apply a discourse model, a data structure represent-
ing the actors in the decision, that is, the named entities and types of actors, and
their “properties, actor relations (including possible actions), and other information”
(Walker et al., 2015a). For instance, the discourse model would include information
that a “ ‘petitioner’ is the person who files the petition for compensation and the
‘special master’ is the person who decides the facts” (Walker et al., 2015a).

In dealing with attribution, it is important to annotate intra-sentence attribution
relations indicating that someone asserted something, that is, the relation among
attribution subject, attribution cue, and attribution object. For instance, a sentence
may indicate a more or less complex relation among terms as in “The SpecialMaster
determined that the vaccination caused the injury.” A similar need applies in other
areas, for example, indicating the conditions and conclusions of a particular rule.

Walker (2016) has argued that annotating such intra-sentence attribution relations
presents special challenges for achieving human annotator reliability and is creating
protocols to guide the annotation. Annotating intra-sentence relations also presents
some technical challenges in terms of annotation interface design and in represent-
ing the relations. It is considerably harder for humans to annotate such relations
correctly and coherently than it is to mark up spans of text and assign a type.

Developing and evaluating a discourse model for the LUIMA approach is a focus
of current research. Computational linguistics provides some useful tools, such as
discourse parsing to generate some information about the structure of a coherent
discussion. First, the parser segments the text (e.g., a paragraph) into clauses or
other basic units of discourse. Based on a framework for analyzing discourse such
as Rhetorical Structure Theory (RST) (Mann and Thompson, 1987, pp. 87–190),

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 371 — #22

Cognitive Computing Legal Apps 371

figure 12.4. RST-Tree for Mason excerpt showing some attribution information

it then classifies the relationships between the segments and outputs an RST-Tree.
Among other things, the RST-Tree shows information about attribution.

For example, Figure 12.4 shows the RST-Tree of a textual excerpt from the Mason
case of Section 3.3.2:

Mason testified that Lynchburg Lemonade became “the most popular drink we
had.” He estimated that it comprised about a third of his total sales of alcoholic
drinks. Obviously, the exclusive sale of Lynchburg Lemonade was of great value
to Mason. We might reasonably infer, moreover, that the beverage could also have
been valuable to his competitors in the Huntsville area.

The discourse parse shows an attribution to the plaintiff Mason as a witness, fol-
lowed by an elaboration, another attribution to Mason, followed by an attribution to
“We,” which, based on information not shared by the parser, means the judges (i.e.,
the court).

Conceivably, a discourse parser2 could be incorporated into the annotation
pipeline of the previous chapter. It could generate RST-Trees for targeted portions
of text, and use the segmented units, their relations, and the related attribution infor-
mation as a feature in the next step of the pipeline (Falakmasir, 2016). In addition,
the discourse model will need information about how judges refer to themselves in
indicating their conclusions.

Of course, the paragraph in Figure 12.4 is not a particularly complex example
of judicial writing. Recall Judge McCarthy’s three-part test in Popov v. Hayashi for
determining who owns a baseball hit into the stands (see Figure 6.10). Judicial prose
will test the limits of natural language parsing for years to come.

Distinguishing Polarity
In annotating legal texts for purposes of assessing hypotheses, the legal app needs
to distinguish the polarity of rulings of law, holdings on issues, findings of fact,

2 See, e.g., the open-source tool at http://agathon.sista.arizona.edu:8080/discp/

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 372 — #23

372 Connecting Computational Reasoning Models and Legal Texts

and proffered evidence. This means, for example, that in a vaccine injury case, the
system needs to determine whether, regarding the holding on the firstAlthen require-
ment, the SpecialMaster decided thatMMR vaccine could cause intractable seizure
disorder or not. Did the Special Master regard the Government’s expert witness’s tes-
timony as supporting a finding of causation or as contradicting it? In a trade secret
case, concerning the legal rule requirement that the alleged trade secret information
must have been misappropriated, did the judge hold in favor of the plaintiff or the
defendant?

In argument mining generally, identifying the polarity of the propositions in
the conclusion and premises is important, that is, whether a proposition sup-
ports the conclusion or is against it. This also helps to distinguish arguments and
counterarguments.

Although polarity in argument mining presents some “unique challenges”
(Aharoni et al., 2014b), some researchers are successfully using rule-based or ML
approaches to distinguish it in annotations within or even across domains.

Perhaps the simplest approach is to implement a rule that identifies linguistic
evidence of negation and annotates the polarity of the proposition accordingly. For
example, in a type system for clinical NLP, ‘ “cancer has not spread to the lymph
nodes’ would yield a negative ‘locationOf’ relationship” (Wu et al., 2013, p. 9).

In another nonlegal context, the Debater team addresses polarity with ML. As we
saw in Chapter 1, IBM’s Debater program identified the polarity of propositions rel-
ative to a topic, that is, whether the proposition was pro or con the topic. In Debater,
the researchers applied a supervised ML approach to train a classifier to annotate
polarity (Slonim, 2014). They:

1. Defined the concept of a “Pro/Con polarity” and provided examples,
2. Trained humans to detect polarity, providing ground-truth data,
3. Applied ML to develop a classifier that captures the “statistical signature” of

polarity,
4. Assessed the classifier over ground-truth data in new instances.

The Debater team’s systematic approach to ML based on manual annotation of
training sets is discussed in Section 10.6.1.

It is still an empirical question whether the means for expressing negation in
rulings of law, holdings on issues, findings of fact, and decisions regarding evi-
dence present patterns and constraints sufficient for a similar annotation rule or ML
approach to succeed.

Acquiring Domain-Specific Concepts and Relations
The expanded type system of Section 11.5.3 aims to be comprehensive in defining
roles of propositions in legal arguments generally across legal domains. As a paradigm
of cognitive computing, collaborative hypothesis-testing could be useful across legal
domains where legal or evidence factors can be identified.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 373 — #24

Cognitive Computing Legal Apps 373

Legal domains, however, necessarily involve concepts and relations drawn from
the regulated subject matter. For instance, in the vaccine injury domain introduced
in Chapter 5, issues of legal causation are related to those of medical causation.

For any particular legal domain, the legal app will need to acquire and repre-
sent domain-specific knowledge. This includes claim-specific concepts, relations,
and mentions, the kind of presuppositional information illustrated in Table 11.2, and
basic vocabulary, such as the names of illnesses and vaccines in the vaccine injury
domain. Some techniques for annotating this information have been discussed in
Sections 10.5.3, 11.5.3, and 11.5.4.

Regulated domains are dynamic, however. New terminology is introduced, such
as new commercial vaccines or newly discovered links between vaccines and
injuries. Consequently, there is a need to maintain and update aspects of the
regulated domain-specific information including the specialized vocabulary.

Nonlegal institutions are engaged in the activities of developing type systems and
ontologies as they seek to improve conceptual information retrieval in their special-
ized domains. Since this is particularly true in medicine and public health, it would
be efficient to connect a legal type system with medical ontological resources and
type systems. Online medical ontologies extensively cover vaccines and the injuries
they may cause and provide dictionaries for normalizing vaccine and injury names
with all their abbreviations or commercial names.

An active area of research is how to make different ontologies, developed in
different domains, interoperable:

Direct interoperability among different UIMA NLP modules requires them to be
based on the same type system [or to construct] annotators . . . to serve as wrappers
to translate among different type systems. (Liu et al., 2012)

Research on techniques to enable cross-domain use of medical ontologies and type
systems is presented in Liu et al. (2012) and Wu et al. (2013).

Although the methods for achieving interoperability of legal type systems and
those of other domains lie beyond the scope of this book, there may be low-hanging
fruit. Even simple vocabulary listings of terms and variations in a standardized form
with some semantic information would be useful in dealing with the need to normal-
ize terminology such as illnesses, vaccines, their abbreviations, and their commercial
names.

12.5.2. Challenges: Manual Annotation of Training Instances

A recurring theme since Chapter 9 has been the growing need for humans to anno-
tate statutes, cases, and other legal documents. If the hypothesis-testing paradigm
is useful across legal domains even more manual annotation will be required. As
noted in Section 10.6, while not all of the texts in a corpus will need to be ana-
lyzed and annotated, one still needs valid training sets, and this will require a sizable
investment of resources in manual annotation of texts, but by whom?

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 374 — #25

374 Connecting Computational Reasoning Models and Legal Texts

Here, we explore two answers to that question. First, crowdsourcing is an intrigu-
ing possibility for annotating texts, even legal texts. Crowdsourcing involves enlisting
large numbers of people to perform tasks requiring human intelligence that comput-
ers can currently not perform such as marking up a training set of texts. Employers
can use websites such as Amazon Mechanical Turk to post tasks to be performed
in parallel by large, paid crowds of workers called providers or Turkers. Second, it is
possible that instead of relatively inexpert Turkers, law students and trainees could
perform the annotations as part of their studies. In either case, the humans would
employ an online annotation environment such as those illustrated in Section 10.6.3.

Crowd-Sourced Annotation Environments
Researchers demonstrated the feasibility of a crowdsourcing approach to anno-
tating requirements in legal privacy policies in Breaux and Schaub (2014). One
task involved extracting from privacy policies descriptions of requirements for data
collection, sharing, and usage.

The researchers addressed the question of whether a “crowd” of annotators with no
legal training can reliably annotate legal texts. The key seems to be carefully break-
ing down the annotation task into smaller subtasks, each simple and well-defined
enough to be undertaken by nonspecialist annotators. Breaux and Schaub (2014)
decomposed the annotation task into four identification subtasks, each focusing on
a different target: action verbs, types of information, sources and targets, and pur-
poses. Where feasible, other identification tasks were performed automatically, such
as using NLP to identify modal verbs.

An online interface developed by the researchers presents crowdsource annotators
with text excerpts from privacy policies, such as

We may collect or receive information from other sources including (i) other Zynga
users who choose to upload their email contacts; and (ii) third party information
providers.

The annotators select and highlight relevant phrases and press “concept” keys to
encode the phrase as an instance of a particular concept. In the above extract, for
example, an annotator may highlight “collect,” “receive,” and “upload” and relate
them to the appropriate concepts on a list of concepts of interest (Breaux and Schaub,
2014, p. 169).

Their experiments demonstrated that crowds could perform sentence-level and
phrase-level coding. Their decomposition workflow involving coding simpler com-
ponents resulted in “an acceptable aggregate response at a reduced overall cost”
(Breaux and Schaub, 2014, p. 171).

Breaking the overall annotation problem into simpler coding tasks was feasible
with the kinds of texts employed in Breaux and Schaub (2014), regarding consumer-
oriented data privacy policies. Presumably, the tasks were well-defined ones that
could be performed without the need to consider the whole document.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 375 — #26

Cognitive Computing Legal Apps 375

It is harder to imagine how to decompose the activity of annotating legal cases into
component tasks simple enough to be applied by human annotators without some
level of legal expertise or training. Those annotators would need to access a case’s
overall factual and legal context in order to make intelligent annotation decisions.

Annotation for Students
Certainly, students can annotate texts effectively and many have done so. The IBM
Debater team employed graduate students to identify (nonlegal) topics and evidence
(Section 10.6.1). In a legal context, the LUIMA group used vaccine decisions anno-
tated by law students. Students at Hofstra’s LLT Lab marked up sentences for types
including LegalRuleSentences or EvidenceBasedFindingSentences (Section 10.5).
Students have annotated legal factors in trade secret cases at the University of
Pittsburgh (Section 10.6) and in the work of Wyner and Peters (2012) (Section 10.4.3
and Figure 10.5).

Annotation has been applied as a teaching tool in other domains of argumenta-
tion. It can help learners “engage in scientific argumentation” (Zywica and Gomez,
2008), another domain where researchers apply argumentation mining with human-
annotatedML training sets (Teufel et al., 2009). In high-school subjects such as social
studies, literature, and science, annotations may be applied “to highlight important
information like main ideas (argument or claim), supporting ideas (evidence), key
content vocabulary words,” “important facts or main ideas,” “definitions provided in
the text,” and “major conclusions drawn” (Zywica and Gomez, 2008). These types
correspond roughly with the annotation types for legal argument, as well.

The question is, can annotation become an integral part of legal education and
training? There is mounting evidence that it can. A current movement in legal
education toward online open-source casebooks includes facilities for students and
others to mark up texts and to make the annotations publicly available (see Berkman
Center for Internet and Society, Harvard Law School Library, and Harvard Library
Lab, 2016).

Annotation has been used to help train law students in close reading of legal
materials. Classroom Salon, a web-based tool that allows “students to read together,
annotate the passage, and answer questions,” supports annotations in the form of
written comments to which students can assign tags (Blecking, 2014). In a law
school intervention that included annotation with “Classroom Salon,” researchers
demonstrated “measurable gains in reading” (Herring and Lynch, 2014).

A computer-supported environment for highlighting and annotating argument-
related information in legal texts could help students learn structures of legal
reasoning and better interpret argumentative texts. The concepts and relations to
be annotated involve substantive law and the structure of legal decisions and argu-
ments. First-year law students encounter them as part of learning to read cases and
statutes. Legal instructors attempt to teach first-year law students to recognize propo-
sitions in legal decisions that state a legal rule, express a judge’s holding that a rule

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 376 — #27

376 Connecting Computational Reasoning Models and Legal Texts

requirement is satisfied or not, or express a finding of fact. It would be education-
ally valuable for students to annotate the texts with these argument roles because it
would draw their attention to key aspects of a case.

Similarly, annotation may assist new employees of law firms to learn their
employer’s particular approach to writing legal memoranda and briefs. As law stu-
dents, junior associates and new employees in legal departments, and beginning
judicial clerks perform annotations to learn, they could generate annotated texts for
use in argument mining as a byproduct.

The author and his students have been developing and pilot-testing a convenient
web-based annotation environment, suitable for use with tablet computers, onwhich
law students can identify and annotate sentences that play key roles in legal argu-
ment. A mock-up of the annotation environment is shown in Figure 12.5. A student
has selected the case of NEW JERSEY v. T.L.O. from the “Documents” list on the
left, containing for purposes of illustration, landmark U.S. Supreme Court cases.
This case deals with the constitutionality of a high-school vice principal’s search of a
student’s purse for cigarettes that led to discovering evidence of the student dealing
marijuana.

Law students habitually highlight text in reading their assignments. With a
little extra support, they could annotate the highlighted excerpts. Here a student

figure 12.5. Annotation environment for first-year law students

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 377 — #28

Cognitive Computing Legal Apps 377

has marked up a variety of statements, six of which appear in the middle screen.
After marking each statement, the student selected a color-coded annotation type at
the top left under “Type” and the system highlights the statement accordingly. The
sentence types have been selected for pedagogical relevance, but correspond closely
to sentence-level argumentation types:

Issue-Statement: Statement of issue regarding which court is asked to make a
decision or “holding”

Reason-Statement-Supporting-Holding: Statement of a reason supporting a partic-
ular holding

Reason-Statement-Opposing-Holding: Statement of a reason opposing a particular
holding

Fact-Statement: Statement of a fact on which a reason is based

Holding-Statement: Statement in which court reports its conclusion regarding the
issue

As the student annotates the statements, the system automatically constructs an
outline at the right, organizing the highlighted sentences into an argument summary
identifying the issue, presenting the facts the Court deemed related to the issue, and
presenting the statements supporting (or opposing) the Court’s holding or conclu-
sion. Clicking a statement in the outline moves the text in the middle screen to that
statement in its original context. In this markup environment, students can observe
the utility of framing issues, developing supporting reasons, considering contrary
reasons, and coming to a conclusion or holding.

With a bit of additional support, students could add commentary to the entries in
the outline (e.g., “This is strongest reason pro,” “I disagree with this holding,” “I don’t
understand this reason con”). The system could also provide feedback to a student
about the reliability of his/her annotations given peers’ markups of the samematerial.
It might also engage students in competition based on their reliability information.

Intuitively, as law students and legal employees become more reliable annotators,
the annotation quality will benefit from their expertise. Of course, for this kind of
annotation to succeed, an online annotation environment needs to make it as effort-
less as feasible to read and to annotate as one reads (Section 10.6). The environment
also needs to support computing the reliability of multiple annotations of the same
texts, similar to that of the Debater project (Aharoni et al., 2014a) (Section 10.6.1).

Limits on Semantic Annotation
Although a legal app can accomplish a great deal with argument-related information
annotated in case texts, the kinds of semantic information that can be annotated are
limited.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 378 — #29

378 Connecting Computational Reasoning Models and Legal Texts

A general limitation is that information such as a proposition has to be expressed
fairly directly in the texts for humans to able to annotate it reliably or for the pipeline
techniques to annotate automatically. Whether manual or automatic, annotation
techniques are generally not effective if information must be inferred indirectly from
the text or from multiple passages scattered across the text. As noted in Section 10.6,
the reliability of human annotators is an upper limit on the success of ML from text.
The more indirect the inferences or scattered the textual sources, the harder it is for
humans to agree in their annotations and the lower their reliability.

Some indirect inferences could be supplemented via ontological associations
(Chapter 6). For instance, the teleological reasoning methods (Chapters 3 and 5)
use value-based reasoning. Judges may not refer explicitly in the text to particular
values. Where the values are associated with legal factors as in Figures 5.11 and 5.12,
however, a program that can identify legal factors can still reason with its built-in
knowledge of the values associated with particular legal factors.

Other annotation limits concern patterns in legal texts that are too fine-grained,
too general, too rare, or too complex for text analytic techniques to identify them
well enough for a CMLA to apply. For example, the extent to which one may extract
logical rules directly from complex statutory and regulatory texts is still an open ques-
tion. As discussed in Section 11.6.1, we are attempting to identify the if/then structure
of regulatory provisions to assist in identifying domain entities for statutory network
representations of the provisions. Others, notably Zhang and El-Gohary (2015), have
had some success with extracting logical rules for a limited range of provisions. The
extent to which one can detect fine-grained logical structures with methods that can
scale across regulatory domains is an important empirical question for the future of
the field.

As discussed in Section 10.3.4, programs can identify some general argument fea-
tures in textual arguments, such as nested argument trees of claims and conclusions,
but an open question is to what extent programs can understand and reason with
them. Where the reasons for the conclusion have been elaborated in semantic net-
work representations as in GREBE (Section 3.3.3) or SIROCCO (Section 3.6), a
program can use them to assess relevance and to compare and reason with explana-
tions and arguments. The semantic network representation scheme is quite general,
however. It can be applied across a wide range of fact situations, and that makes
it difficult for ML to be effective, especially when propositions with similar mean-
ings can be expressed in so many different ways. With a controlled vocabulary
and representation scheme, as in SIROCCO, and sentence types acting as sign-
posts, as in the DLF framework, it may become more feasible to manually annotate
semantic networks. Automated annotation of the networks, however, remains to be
demonstrated.

Something similar can be said of argument schemes. As we have seen, argu-
ment schemes play a major role in AI & Law efforts to model legal argumentation
(Chapter 5). Some argument schemes can be annotated (see Table 10.1), and some

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 379 — #30

Cognitive Computing Legal Apps 379

elements of argument schemes identified, such as, arguing by case analogy in terms
of legal factors.

Having identified an argument scheme, however, the extent to which a program
can also fill-in the scheme’s slots with detailed information is an open question. It can
be done well enough to assist with conceptual information retrieval. For instance, a
program can identify where in an opinion an argument by analogy appears to have
been made with respect to a legal concept in dispute. But whether it can be done
well enough for a program then to apply a burden of proof and draw a legal inference
directly from text, as some modelers seem to hope, has not yet been established.

Finally, certain information used by existing prediction models may not be
extractable from texts. This includes engineered features based on behavioral trends
in decisions of individual justices, the Court, and lower courts (see Section 4.4).

In sum, the new techniques may not be sufficient to support all of the automated
reasoning performed by the computational models of Part I. The new legal apps may
not make use of certain features for which there are computational models of legal
reasoning. In that sense, some automated legal reasoning tasks are still “a bridge too
far” for text analytic techniques to elicit in detail.

Conversely, commercial legal apps, including some of those mentioned at the
beginning of this chapter, are extracting information from text that computational
models of legal reasoning in AI&Law are not able to use. This includes, for example,
histories of a particular judges’ decision-making. This kind of information, however,
can be integrated with the methods described in Part III.

12.5.3. Challenges: Query-Interface Design

A second challenge concerns the need for an innovative query-interface design that
enables users to relatively easily specify their hypotheses and argument needs. A simi-
lar issue was discussed in Section 11.5.5 on conceptual information retrieval. As noted
there, the goal is for users to input their queries with a combination of menu selec-
tions and natural language. The App could present its interpretation of the user’s
query either in natural language or as a structured query, and invite the user to con-
firm or to modify using menu options. The App would then translate the query into
conceptual constraints.

A similar approach could enable users to enter their hypotheses. As the templates
in Section 12.4.2 indicate, even though the hypotheses can be quite general in scope,
they are constrained in form. The interface could illustrate the kinds of hypotheses
it can support as in the natural language hypotheses in Figures 12.2 or 12.3 or their
structured equivalents. It could invite the user to select a hypothesis and modify
it to suit.

An online form with templates could help users fill in issues and conditions in a
hypothesis that an “issue of [x] should [or can] be decided for [side] where condition
[y] even though condition [z].” Pull-down menus would provide lists of the types of

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 380 — #31

380 Connecting Computational Reasoning Models and Legal Texts

legal claims, claim elements, legal rules, or rule requirements that a user can specify
as an issue. The lists would be determined by the claims and legal rules for which the
system provides coverage. Based on the user’s selection of issue, the interface would
provide menus for filling in the conditions. The user could select from a list of legal
factors or components for specifying legal holdings, findings of fact, evidence factors,
types of evidence, or statements of fact.

For example, the hypothesis in Section 12.1 concerning a baseball property
conversion claim could be expressed as:

Issue of [property conversion] should be decided for [defendant] where condition
[Not Caught (D)] even though condition [Intentional Interference (P)].

Using menus, the user could select the issue (property conversion), the side
(defendant), and the conditions, two factors from the Property-Interests-in-Quarry
Microworld (Table 6.4), one for the defendant and the other for the plaintiff.

Conceivably, users could also enter simple texts for the conditions, which the sys-
tem could translate into plausible structured entries which it would confirm with
the user. The system could translate the resulting structured hypothesis back into a
natural language version for confirmation or modification.

Once the user’s hypothesis is expressed in a form that can be processed, the legal
app would operationalize it by translating it into subsidiary queries as described
in Section 12.4.3. At that point, the interface would need to support the collabo-
rative hypothesis-testing interactions with the user as described in Section 12.4.4.
This involves enabling the App and user collaboratively to modify the database or
hypothesis based on the preliminary report, to make legal arguments, or to evaluate
the hypothesis.

Supporting this level of collaboration between App and user will present its own
challenges, but they are characteristic of the kind of interactions cognitive com-
puting requires. The interaction is not unlike the incremental process in which
predictive coding in e-discovery (Section 8.4.1) or in statutory analysis (Section 8.7.1)
supports users in refining their hypotheses about relevance and operationalizing
them in queries.

Today’s predictive coding systems for e-discovery are good examples of cognitive
computing. Predictive coding is a collaborative intelligent activity between humans
and a computer system to model the relevance of texts in a corpus for solving partic-
ular legal problems in which each partner does what it can do best. Humans select
positive and negative instances of what they regard as relevant to the legal problem
they are facing. The computer system generates a statistical model of the training set
thus far, and retrieves and classifies additional documents. Together human and sys-
tem refine themodel of relevance. As noted in Section 8.4, litigators have hypotheses
inmind when they search for documents in e-discovery, for example, hypotheses that
the opponent’s files contain documents related to the various legal issues raised in
the pleadings, including the plaintiff’s complaint, the defendant’s answer, and the

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 381 — #32

Cognitive Computing Legal Apps 381

parties’ document requests. With respect to litigators’ hypotheses, however, current
predictive coding for e-discovery does not make hypotheses explicit; the hypothesis
is represented only implicitly as a ML model.

The CCLA proposed here must take the extra step of helping the user express a
hypothesis about a substantive legal and evidentiary issue. This seems to be a step in
the right direction. Ultimately, the relevance hypotheses in e-discovery and statutory
analysis are informed by the potential implications of the retrieved documents for
substantive legal and evidentiary issues. Making explicit the user’s hypotheses about
the latter should someday help to explain and guide the iterative reformulation of
hypotheses and queries regarding the former.

12.6. detecting opportunities for new hypotheses and arguments

This chapter and Chapter 11 have explained how semantic annotation could enable
a cognitive computing model to help humans to find and use relevant materials
in arguments and to frame, test, and evaluate hypotheses against a corpus of legal
texts. Achieving this goal is subject to addressing the above challenges, which are
substantial but nevertheless seem feasible to accomplish in the next few years.

Text analytics and semantic annotation will not enable systems to read texts in the
sense that humans do, at least, not anytime soon. While a program may intelligently
process argument-related information, it does not understand the arguments in a
deeper sense.

On the other hand, a program may not need a deep understanding to detect an
opportunity for posing a new legal hypothesis or argument. A programmay be able to
identify such opportunities by detecting violations of expectations that suggest new
hypotheses or analogies across legal domains that may lead to new arguments.

Violations of Expectations. Predictive methods generate expectations that a pre-
diction will be correct. When a prediction turns out to be wrong, it violates the
expectation and invites one to reason why (see Schank, 1996).

Guided by expectation failures, a system may be able to explore legal text corpora
autonomously searching for “interesting” hypotheses to pose and test novel argument
features or even novel arguments. Where a system annotates claims, issues, winning
and losing sides, arguments, and legal factors, in principle, it can explore a corpus
looking for cases whose outcomes violate expectations.

For example, the argument-related features in a case may predict an outcome
inconsistent with the case’s actual outcome. If a claim has pro-defendant legal fac-
tors, the VJAP or IBP models are more likely to predict that defendant would win. If
the plaintiff wins, and the win cannot be explained in terms of known pro-plaintiff
factors, it suggests a hypothesis that the text contains as yet unannotated countervail-
ing features, perhaps a pro-plaintiff legal factor in the court’s discussion of the claim
that the system does not know exists or how to identify. This could lead it to “notice”

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 382 — #33

382 Connecting Computational Reasoning Models and Legal Texts

that text and enlist the human expert collaborators in a kind of sensemaking activity.
The system would present the hypothesis and assist them to analyze the text more
closely for factors to explain the anomaly.

Changes in the meaning of a legal concept over time can also lead to violations
of expectations. Section 7.9.4 presented a technique for monitoring the outcomes of
decisions applying a particular legal concept. Measurable changes in the decision
trees implementing the concept provided a clue for hypothesizing that the concept
was drifting and to a technique for confirming the hypothesis.

Incidently, any type of case outcome prediction can raise expectations, including
predictions based on historical trends, as in the U.S. Supreme Court predictions
(Section 4.4), or on analogies to value trade-offs in past cases, as, for example, in the
VJAPmodel (Section 5.7). Expectations raised by litigation participant-and-behavior
features in Lex Machina, case analytics in Ross, or citation network trends in Ravel
(Section 12.2) that are inconsistent with a given case’s outcome can also indicate the
need for assessing a hypothesis about undetected argument features.

Cross-Domain Analogies. The text annotation techniques described in this book
identify argument-related reasons in prior cases that computational models of legal
argument can employ. These argument models primarily reuse arguments and rea-
sons from similar prior cases involving the same legal claim and adapt them to
argument needs and facts of a new case in the same domain. The retrieved cases
and their arguments may be novel to a particular human user but they have been
used before in cases.

This begs the question whether a system can assist humans to construct and assess
truly novel arguments, that is reasonable legal arguments that are not drawn from
prior cases within the same legal domain. “As lawyers recognize, creativity and nov-
elty in legal argument generally comes from importing legal concepts from one
area of law into another, and by combining existing arguments in new and per-
suasive ways” (Remus and Levy, 2015, p. 62). Presumably, constructing reasonable
arguments that are also novel requires a deeper semantic understanding of the texts
than the annotation techniques discussed here will provide. Consider the analogy in
Section 3.4 of the gun-toting schoolmaster who frightens students from attending the
school of his competitor.

These text annotation techniques and computational models of legal argument
represent the meaning of a legal reason in a variety of ways. The text excerpt asso-
ciated with the reason is annotated as a type of legal reason, for example, a legal
factor, an evidence factor, or a holding that a rule requirement has or has not been
satisfied. The type annotation indicates the way the text excerpt has been used as a
proposition in an argument, such as a reason for or against a finding of fact or con-
clusion that a legal rule requirement has been satisfied. The computational model’s
knowledge representation structures also provide information about the reason. For
instance, CATO’s factor hierarchy, IBP’s or VJAP’s domain models associate the

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 383 — #34

Cognitive Computing Legal Apps 383

reason with particular legal issues, including rule requirements, and with other rea-
sons. The VJAP model (Section 5.7) also associates the reasons with underlying
values or legal policies. In addition, selected concepts and relations expressed in
those text excerpts are annotated as subsentence types including as a standard legal
formulation (Section 6.8).

Where this kind of argument-related information about reasons can be annotated,
human users can retrieve cases that presented analogous situations for decision,
where the analogy is conceived both in terms of shared factual concepts and rela-
tions, but also similarities in the structures of arguments in the retrieved case and in
the arguments the user seeks to make. See the discussion in Section 11.5.3 of different
types of argument structure that annotations of propositions can reveal.

Given this information, a legal app could help human users find examples
of past decisions that address problems conceptually and structurally similar to a
current problem, illustrate the general structure of such analyses or arguments,
illustrate specific resolutions with similar evaluations or trade-offs, or exemplify suc-
cessful and unsuccessful arguments in similar prior cases. Even if this falls short
of a deep understanding of what the reasons mean and why they matter from
a legal viewpoint, it could provide the system with more of conceptual basis for
making smarter relevance assessments than is available with current full-text legal
IR systems.

It is an open empirical question whether a corpus of cases annotated with this kind
of argument-related information can enable a program to learn more about what the
reasons mean, their range of application, and the extent to which they can be gen-
eralized and applied outside of a particular legal claim. According to Wittgenstein,
meaning lies in use (Wittgenstein, 1958, nos. 30, 43). The argumentation schemes
and text annotation provide more information about how the reasons have been
used. For example, one of Vern Walker’s goals in developing the DLF model was
to systematically study judicial evidentiary reasoning (Walker, 2007). The expecta-
tion is that some, perhaps much, of the commonsense reasoning about evidence in
the vaccine injury domain illustrated in Section 12.4.4 could apply in other legal
contexts.

Annotation of domain-specific legal factors in cases involving different kinds of
claims may also reveal cross-domain patterns in the relationships between factors
and underlying values and principles. These patterns include the ones identified
for trade secret law in Figures 5.11 and 5.12, namely, interfering with or waiving an
underlying value, making its application more or less legitimate, not interfering with
it or affirmatively protecting it. Presumably, analogous relationships between factors
and values apply in other domains of intellectual property such as trademark and
copyright. As text annotation techniques make explicit more of the argument struc-
ture of legal decisions and identify the argument schemes applied, it should become
feasible to recognize similarly purposed legal arguments in a different legal domain
where similar underlying policies and values have been at stake.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 384 — #35

384 Connecting Computational Reasoning Models and Legal Texts

A question for future research then is whether the concept of “similar prior cases”
may be generalized to take argument structure into account across legal domains.
Given annotation of argument-related reasons, can a program identify patterns that
suggest the likelihood of cross-domain substantive analogies? If so, a legal app could
offer to focus users on prior case arguments from another domain that may appear
to be peripheral but that at a deeper level are actually analogous and would be novel
in the users’ legal domain of application.

12.7. what to do next?

Let’s assume that a law student or legal practitioner, having made it this far in this
book, is motivated to create a cognitive computing app for the legal profession, but
does not know where to begin. This potential developer, we will assume, is a bit
unsure exactly what the legal app will do. How should he/she proceed?

The short answer is to identify potential use cases for a cognitive computing app. A
use case can be thought of as a series of anticipated interactions between a user and a
system to be designed that would enable the user to achieve a goal (see Shrivathsan,
2009).

In the course of this book, we have encountered a number of use cases. In
e-discovery, one use case is helping attorneys find relevant documents in a corpus
of ESI in pretrial discovery (Section 8.4). Another use case is assisting attorneys in
finding and analyzing relevant statutory provisions (Section 8.7.1). A third is assisting
attorneys in posing and testing substantive legal hypotheses against a corpus of case
texts (Section 12.4).

While the third use case involves making substantive legal hypotheses explicit, the
previous two also involve hypotheses. When attorneys search for relevant documents
or statutes, they have hypotheses in mind concerning the kinds of texts that will be
relevant and how they relate to substantive legal issues. It is just that the predictive
coding process does not usually involve making these hypotheses explicit.

One can identify use cases by observing legal practice inwhatever venue or context
one engages it, identifying systemic problems of practitioners in accessing and using
texts to solve legal problems, and considering the kinds of legal hypotheses they pose
and how new text analysis tools can help them evaluate the hypotheses in ways that
were not possible before.

The venues and contexts include the traditional ones of legal practice such as
a law firm, legal department, or legal clinic. They also include legal research and
study in law school classrooms, libraries, bar exam prep courses, or at home. Less
traditional venues lie at the interface with members of the lay public who need to
understand and interact with some aspect of the legal system. The latter include
services aimed at consumers, for example, an online dispute resolution website,
a portal to public interest legal services, or sources of free online legal resources.
Government-sponsored legal QA systems aim to help citizens with problems in tax,

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 385 — #36

Cognitive Computing Legal Apps 385

zoning, or landlord–tenant law. Other services such as in-house corporate advisory
systems about ethical or regulatory compliance assist employees to avoid committing
foreign corrupt practices.

Here are some use case examples involving legal processes and corpora that are
ripe for developing CCLAs.

Contracts Use Case. Corporations and their legal advisors have realized that even
when no litigation is pending or threatened, the corpora of digital materials that
accumulate in the course of doing business, including contracts and other legal
records, are a potential resource for improving corporate operations and governance,
but only if the texts can be analyzed and understood.

Contracts are relatively well-structured texts, and many companies maintain
repositories of contracts in electronic form including licensing agreements, leases,
and employment-related agreements. As a result, semantic analysis of contract texts
is both feasible and economically important. Indeed, semantic retrieval from a con-
tracts corpus with tools able to understand contract structure and to characterize
provisions in substantive terms already exists and is rapidly improving.

LegalSifter, a Pittsburgh start-up, has identified a variety of use cases involving
annotating repositories of contracts, including for purposes of due diligence, lease
accounting, and financial services regulatory compliance. Regarding due diligence,
programs can probably annotate terms and conditions in repositories of contracts
including “assignment and change of control clauses . . . effective dates, parties,
people to whom notices are sent, [and] notice addresses.” For lease accounting,
automatic annotation could identify significant event times such as lease com-
mencement, expiration, or assessment dates, as well as option clauses for renewal,
termination, purchase, or payment. For financial services, it could keep track of pro-
visions dealing with “governing law” and “termination rights” (LegalSifter, 2016;
see also Remus and Levy, 2015, pp. 14, 18), which mentions a commercial ser-
vice using data-driven techniques advertised as able to induce basic templates for
a firm’s contracts and to flag discrepancies between proposed new contracts and the
templates.

An interesting use case involves tracking changes in contracts and contract admin-
istration over periods of time. Annotations of contracts over months or years could
help management determine longer-term changes and trends in “payment terms,”
“master agreements,” or exposure to “consequential damages.” Conceivably, tem-
poral relationships would emerge, for instance, whether sales contract terms are
still complying with a company’s strategic guidelines or trends in revenue yields in
different contract types (LegalSifter, 2016).

A key for automated analysis is identifying features for comparing selected types
of contract provisions in terms, say, of how restrictive they are on a licensee or
lessee, or the extent to which they limit certain risks. This, in turn, means identi-
fying those features’ semantic components such as temporal spans, rates of return,

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 386 — #37

386 Connecting Computational Reasoning Models and Legal Texts

or limitations on liability, and determining how to find or infer them automatically.
A type system can reify the important structural components of contracts, the use-
ful features for comparison, and their underlying semantic components. Through
some combination of manual marking up training sets of contract texts, ML, and
manually constructed annotation rules, it should be possible to automatically anno-
tate the corpus and support conceptual retrieval. Human users who are conducting
due diligence or planning business strategies could then iteratively formulate, refine,
and test hypotheses, at least manually, through conceptual retrieval based on the
annotations.

Extending e-Discovery Use Case. A use case extending e-discovery also involves
tracking information over time and across multiple clients’ matters.

As explained in Section 8.4, the text corpora generated by e-discovery in litigation
include quite diverse texts of parties and their opponents. Since most of the texts are
relatively unstructured, from the viewpoint of semantic legal annotation, there are
few obvious concepts and relations to grab onto. The connection between relevant
documents and legal issues is almost entirely implicit.

In a variation of an e-discovery use case, a collaborative computing legal app could
help users to partially formulate some relevance hypotheses explicitly without over-
burdening users’ already onerous task. In the process, the links between relevant
documents and legal issues could become more explicit.

In litigation discovery, the parties’ pleadings govern which documents will be rel-
evant to the litigation. Generally, a document is legally relevant only in so far as
it relates to a legal issue in the plaintiff’s complaint, the defendant’s answer, or in
the related pleadings that frame the lawsuit. In drafting the pleadings, the parties
have identified the legal claims and defenses they are prepared to assert. They have
thereby made explicit many of the legal issues that will be raised.

It should be possible, therefore, for litigators to link documents to the legal issues
to which they are relevant. A dropdown menu tool could list the issues raised in
the pleadings. At some point in the predictive coding process, litigators could use
the menu to associate documents with the corresponding issues. The linking activity
would direct litigators’ attention to the claims and defenses raised in the lawsuit, a
good discipline in conducting discovery. These linkages represent, in effect, at least
part of a litigator’s hypothesis about why the documents are relevant to the lawsuit,
and they could be helpful in explaining that relevance in court.

The conceptual links may not have much impact on automating the e-discovery
task in a given case, at least not initially. As noted, the detailed way in which a par-
ticular document relates to a legal claim, for instance, an alleged fraud, is likely to
be entirely implicit.

Over time, however, across corpora of anonymized documents produced in mul-
tiple cases litigated by a firm, the associations between documents and issues may
be useful. ML could develop profiles associating issues with types of documents,

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 387 — #38

Cognitive Computing Legal Apps 387

terminology, patterns of usage, types of senders and receivers, or patterns of dis-
tribution. This learned information, in turn, could help to improve automated
clustering of documents (see Section 8.4.5) and provide additional filters for selecting
documents relevant to the particular issues in a new case.

Before this kind of cross-client and cross-matter activity is feasible, of course, it
will be necessary to develop techniques for anonymizing documents in e-discovery
automatically. Tools for automating anonymization, an important use case in its own
right, are currently under development in a number of firms.

Use Cases Extending Legal Hypotheses and Corpora. The queries and predic-
tive hypotheses illustrated above are only a few examples of useful legal hypotheses.
Anyone who has studied or practiced law has likely developed intuitions about
other kinds of hypotheses people want to test against a corpus of legal texts. These
vary across legal domains, audiences, tasks, and the kinds of underlying concep-
tual relationships of interest. The techniques described here are still emerging from
academic and commercial research groups and need to be adapted to other legal
corpora, tasks, hypotheses, and user communities.

One feature makes the LARCCS approach especially appropriate for applying to
a variety of legal corpora. It would analyze and rerank the output of more traditional
legal IR systems. As a result, it would not require changing the manner in which
cases are represented, indexed, and retrieved in those IR systems.

This expands the opportunities for constructing novel use cases for the wide range
of text corpora involved in modern legal research. These include proprietary com-
mercial repositories like Westlaw, LexisNexis, or Bloomberg, access to which is
subject to subscription agreements, or Google Scholar Cases and Court Listener,
which offer free search capabilities. Interestingly, some of the commercial reposi-
tories of legal texts, or portions thereof, have become available subject to license
directly through the Watson Developer Cloud.

Today, however, there are also many alternative sources of useful legal text cor-
pora. A comprehensive, indexed list of free sources of potential data may be found at
Library (2015). The open access to law movement, including AustLII, the Australian
Legal Information Institute and other LIIs worldwide, provides a wide array of legal
documents as do a number of courts, legislatures, regulatory agencies, and treaty
organizations. Many of the free sources are subject to less-restrictive open-source
licenses of various types.

Some law schools, organizations, and agencies also sponsor specialized reposito-
ries of legal texts such as Pace Law School’s CISG database of cases and scholarly
materials concerning the UN Convention on the International Sale of Goods
(Kritzer, 2015), or the Index of WIPO UDRP Panel Decisions (WIPO, 2015). Law
schools may also collect student essays and student exam answers. Organizations
sponsoring moot court competitions amass corpora of participants’ arguments and
may make them available to some extent for reference. Finally, law firms, corporate

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 388 — #39

388 Connecting Computational Reasoning Models and Legal Texts

legal departments, and legal clinics have private repositories of legal arguments in
the form of legal memoranda and briefs.3

These diverse sources share a need to support conceptual information retrieval
and cognitive computing. Across the legal communities and domain tasks served by
these diverse sources, the nature of the hypotheses people want to test will likely
vary, as will the kinds of patterns that are useful for drawing inferences in cognitive
computing. Hypotheses may focus on substantive differences across jurisdictions.
For example, how does the kind of “personal data” subject to legal requirements
vary across jurisdictions subject to EU Data Protection Directives and those subject
to U.S. federal and state law? Do the concepts of “reasonable measures,” “value,” or
“public” in the definition of “trade secret” in the Economic Espionage Act, 18 U.S.
Code §1839(3), have the same meanings as in state trade secret law? Alternatively,
the hypotheses may focus on concept evolution over time. For example, are courts
addressing the concept of “treatment” in the HIPAA Privacy Rule in the same man-
ner as in the Congressional hearings? What trends have there been in the meaning
of the requirement of “good faith” in submitting a bankruptcy plan under 11 U.S.
Code chapter 13?

The form and nature of the legal sources will also vary. A law firm’s legal memo-
randa and briefs record how the firm has addressed particular problems or types of
problems in the past. Briefs present the interesting possibility of a corpus of triples: a
firm’s brief pro an issue, an opponent’s brief con, and a court’s actual decision resolv-
ing the dispute. The expanded argument types above could identify nested argument
structures concerning competing conclusions about legal rule requirements. Addi-
tional techniques would be needed, however, to compare the competing argument
structures, identify their salient differences, and capture the resolution in a manner
from which tentative strategic lessons could be drawn.

As one moves from legal case opinions, briefs, and legal memoranda to law review
articles and treatises, one will need to expand the argument-related type system to
encompass the argumentation patterns of these media. Law review authors’ claims
tend to be more general; they hypothesize about changes in the law and their impli-
cations for policy. The kinds of arguments these authors employ to substantiate their
claims will be more general, as well, necessitating greater reliance on the nested
argument structures of claims and conclusions.

Finally, for some venues of public interest, the processes and tasks, hypotheses,
relevant concepts and relations, and levels of expertise of human users will vary.
A resource for advising veterans about legal issues of proving service-connected
posttraumatic stress disorder will focus on different aspects of past case arguments
than one aimed at supporting their pro bono legal counsel. Adapting to these
more general kinds of queries and hypotheses will require imagination and a

3 These repositories are subject to a variety of legal and technical constraints that must be taken into
account in designing a proposed legal app. They also vary as to their technical accessibility and the
extent of preprocessing required (see Section 8.3).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 389 — #40

Cognitive Computing Legal Apps 389

willingness to observe how real consumers, employees, and citizens engage in the
processes.

Common Tasks across Use Cases.Whatever the use case, the approach will involve
some basic inquiries. One needs to establish how a program could help practition-
ers to apply semantic information annotated in the legal texts to answer questions,
test hypotheses, make predictions, explain answers or predictions, or argue for and
against conclusions. The emphasis on “help” underscores the cognitive computing
focus on supporting a collaboration between computer system and human users.
The system has access to a great deal of textual information, but needs to organize
that information to assist humans.

A developer should investigate the kinds of hypotheses that users are interested
in testing, the kinds of textual information that will help them do so, and the kinds
of explanations and arguments they expect in support of or against the conclusions.
Answers to the following questions should help in designing an appropriate type
system, annotation process, and collaborative interaction:

1. What concepts in the textual documents are most important for these tasks,
and what kinds of textual references or mentions indicate the presence of a
concept? (see Sections 6.7, 6.8, and 11.6.1)

2. How can a program automatically annotate the concepts? (see Chapters 9
and 10)

3. How can a program learn to rank its candidate texts in terms of importance of
annotated concepts? (Section 11.3)

4. How can a program support users in employing targeted concepts in framing
conceptual queries or hypotheses? (Sections 11.5 and 12.4)

5. How can a program employ the retrieved texts to evaluate the hypothesis?
(Section 12.4)

A developer may still wonder where to begin with question (1). What kinds of
types are important for posing and evaluating legal hypotheses? What aspects of the
substantive law need to be annotated?

The answer involves another question: What aspects of the documents and the
situations they represent do humans compare in terms of substantive legal features?
Such comparisons often lie at the base of evaluating hypotheses that predict legal
outcomes, limits, and trends. To the extent that the elements for these compar-
isons can conceivably be annotated in text, they need to be represented in the type
system.

Most of the argument structures we have seen in this book enable substantive
comparison of cases in terms of measures of their fact situations’ strengths relative to
a particular type of claim. The cases can be compared in terms of:

– Models of legal factors and issues (IBP, Section 4.5.2) augmented with value
trade-offs of decisions (VJAP, Section 5.7),

– Coverage of requirements in DLF rule trees and evidence factors (Section 5.8),

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 390 — #41

390 Connecting Computational Reasoning Models and Legal Texts

– Roles of sentences in legal arguments and component LUIMA types
(Section 6.8),

– Structural matches of criterial facts (GREBE [Section 3.3.3] and SIROCCO
[Section 3.6]),

– Citation network centrality (BankXX, Section 7.9.3).

Comparing the restrictiveness of regulatory standards has been modeled with:

– Norm graphs (Section 2.5.1),
– Requirements watermarking (Section 9.7),
– Network analysis of statutorily mandated interactions (see Sections 2.6

and 11.6.3),
– Restrictiveness of rule trees or decision trees implementing the concepts (see

Section 5.8) and concept change (Sections 7.9.4 and 12.6),
– Some combination of the above to compare the outcomes and relative strengths

of cases decided under the regulatory standards.

It may be that the concepts for comparison cannot be readily annotated auto-
matically (question 2) such as the semantic networks of criterial facts in GREBE
or SIROCCO. Alternatively, perhaps the hypotheses are not of a type the program
can process directly, but it can still help the human user frame conceptual queries
for documents or cases to compare (question 4). For instance, programs can assist
humans in analyzing the statutory or citation networks with network analytics or
heat map summarizations, but a human has to pose the hypothesis and interpret the
evaluation.

To the extent that the intended collaboration involves the system in reasoning
with the annotated information for purposes of evaluating a hypothesis through pre-
diction and argumentation (question 5), a computational model of legal argument
would most likely need to be in place. At this point, only some of the above case
comparison types connect to such a model and can be extracted automatically in
texts to some extent. As we have seen in Chapter 5, argument models developed
in the AI & Law community can perform some level of prediction, argumentation,
and reasoning based on legal factors. When supplemented with coverage of rule tree
requirements, evidence factors, and sentence roles in legal argument and their com-
ponents, a legal app could assist humans in posing and evaluating legal hypotheses
directly from case texts.

Success in this endeavor would represent a paradigm of cognitive computing and
a pinnacle of AI & Law.

12.8. conclusion

In helping human users to make their hypotheses explicit and to test them against a
corpus by specifying queries in terms of conceptual constraints, CCLAs will engage
humans and computers in a fruitful collaboration.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 391 — #42

Cognitive Computing Legal Apps 391

Many challenges remain, including the need for human annotation and for
designing new interfaces that can elicit and process users’ legal hypotheses and help
them to evaluate the results. Annotation requires an investment in interface design,
process engineering, and human labor, and it is an open question how widely one
can reasonably scale such resource intensive work across legal domains.

It seems realistic, however, to hope that enterprises such as law firms, database
providers, corporate legal departments, government agencies, or legal clinics would
support this work. Together one could tailor type systems to capture concepts and
relations relevant to their particular argument-related information retrieval require-
ments, corpora, and legal practice issues, enlist human annotators using the most
convenient computer-supported annotation environments available, train the ML
models on the annotated data, and apply them to the corpora in order to support the
enterprise’s operations through customized legal AR, analysis, and prediction.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“C12” — 2017/5/27 — 12:21 — page 392 — #43

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.012
Downloaded from https://www.cambridge.org/core. Faculty of Classics, University of Cambridge, on 03 Nov 2017 at 09:30:34, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.012
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 393 — #1

Glossary

Ablation “Turning off” a model’s knowledge source to deter-
mine the contribution it makes to the model’s
efficacy.

Abstract argumentation
framework

An argumentation frameworkwhose argument graphs
contain only arguments that attack each other.

Acceptable A proposition in an argument that is presumably true
given the arguments up to that stage and a set of
assumptions.

Accuracy (A) The ratio of correct case predictions over all case
predictions.

Algorithm A set of computational steps for solving a problem.

Area under the ROC curve (AUC) A ML metric for evaluating a binary classi-
fier, AUC relates to the probability that a classifier
will rank a randomly chosen positive data point (e.g.,
relevant provision) higher than a randomly chosen
negative one (nonrelevant provision).

Argument mining Automated analysis of corpora to identify argument
structures in documents such as premises, con-
clusions, argumentation schemes, and argument–
subargument and argument–counterargument
relationships between pairs of arguments.

Argument retrieval (AR) Enabling an information retrieval system to
use information about the roles that propositions
play in legal arguments and other argument-related
information to improve retrieval performance.

393
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 394 — #2

394 Glossary

Argument scheme A template with predefined components for con-
structing a typical type of argument.

Argument-related
information

Information in legal cases about the roles of propo-
sitions, and other text elements, in the argument
presented in a case. Useful for argument retrieval,
it includes sentences’ roles in arguments as proposi-
tions, premises, or conclusions, statements of rules
in the abstract or as applied to specific facts, or as
case holdings and findings of fact, legal factors, and
evidence factors.

Argumentation framework Defines an argument as a structure comprising a
premise, a conclusion, and exceptions.

Attribution In a legal decision, information signaling or affecting
the court’s judgments about belief in an argument.

Augmented Transition
Network

(ATN) Graph structure that analyzes problems
involving sequences of events as a series of states and
rule-defined possible transitions from one state to the
next.

Average precision (AP) A measure of ranking performance equal to
the average of the proportions of retrieved docu-
ments that are relevant in the top-i ranks of retrieved
documents.

Backward chaining Testing if any rule’s conclusion is a desired goal and
adding that rule’s conditions to the set of desired
goals.

Bag of words (BOW) A representation of a document as a collec-
tion of terms that ignores the sequential order of the
terms in the document.

Bayesian network (BN) A graphical model of probabilistic causal rela-
tionships. Each node represents an event with a
variable to indicate whether it has occurred. The
arcs represent causal influences affecting the like-
lihood of an event’s occurrence including con-
ditional probabilities associated with those causal
influences.

Bipartite An argument diagram that distinguishes between
propositions and arguments that support a proposi-
tion and those that attack the proposition.

Boolean relevance measure In an information retrieval system, a set of logical
criteria for the documents to be retrieved.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 395 — #3

Glossary 395

Breadth-first search Given a list of rules to try with a given conclusion,
the program tries to prove a descendant rule for
each of the rules on the list before trying to prove a
descendant of any of the rules’ descendants.

cfs This stands for the “current fact situation”, that is,
the case at hand, about which arguments are being
made.

Citation network diagram System of statutes, regulatory provisions, or cases
represented as a network or graph of the reference
relations among them.

Cognitive computing Collaborative problem-solving by human and com-
puter working together, each performing the intelli-
gent activity that each does best.

Computational model of
legal reasoning

(CMLR) A computer program that implements a
process evidencing attributes of human legal reason-
ing. The CMLRs that implement a process of legal
argumentation are called computational models of
legal argument (CMLAs).

Conceptual legal
information retrieval

Automatically retrieving textual legal information
relevant to answering a user’s question based on
matching documents’ concepts and roles with those
required by a solution to the user’s legal problem.

Confidence interval In a statistical estimate, range of values estimated to
contain the true value regarding a characteristic of
interest in a population, with the desired confidence
level.

Confidence level In a statistical estimate, the chance that a confidence
interval derived from a random sample will include
the true percentage of elements in a population that
have a characteristic of interest.

Critical question Component of argument scheme that addresses
acceptability of the scheme’s premises and points out
exceptional circumstances in which the scheme may
not apply.

Cross validation or k-fold
cross validation

A standard procedure for evaluating a ML program
in which the data is divided into k subsets or “folds.”
In each of k rounds, a different one of the k subsets
is reserved as the test set. The ML model is trained
using the k − 1 subsets as the training set.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 396 — #4

396 Glossary

Decision tree AML technique that learns a tree-like set of questions
or tests for determining if a new instance is a positive
instance of a classifier. Each question is a test: for
example, if the weight of a particular feature is less
than a threshold value, branch one way, otherwise
branch the other way.

Defeasible rule A rule whose conclusion presumably holds when the
rule’s condition is satisfied, but is not necessarily true.

Depth-first search Given a list of rules to try with a given conclusion, the
program tries to prove the descendant of the current
rule and, if successful, makes the descendant the cur-
rent rule before trying any of the other rules on the
list.

Dimension In the Hypo program, a general framework for repre-
senting legal factors.

Document-term matrix In ML from text, a spreadsheet representing docu-
ments in rows and by words. Each row is a vector rep-
resenting a document in terms of the words/features
it contains from all of the words/features in the
corpus.

e-Discovery The collecting, exchanging, and analyzing of elec-
tronically stored information (ESI) in pretrial
discovery.

Elusion In information retrieval, the proportion of unre-
trieved documents that are relevant.

Evidence factor Indication of fact trier’s stated reasons for a con-
clusion and assignment of plausibility. Shows why
evidence tends to be sufficient to prove a legal rules’
antecedents (or not).

Extensible Markup
Language

(XML) A standardized set of rules for annotating (i.e.,
marking up) documents in a human-readable and
computer-readable format.

Extensional definition Provides examples of what is/is not an instance of a
concept.

F1-score or F1-measure The harmonic mean of precision and recall where
both measures are treated as equally important.

Factor (initial caps) In the CATO program, a knowledge
representation technique for representing legal fac-
tors that simplified Dimensions.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 397 — #5

Glossary 397

Feature vector Text representation where the value for each fea-
ture is the magnitude of the feature in a text along a
feature dimension. Similar to a term vector but uses
features other than terms and term frequencies.

Forward chaining Testing if any rule’s conditions are satisfied by the
current facts in the database and adding that rule’s
conclusion to the database.

Heuristics Frequently useful “rules of thumb” that are not guar-
anteed to lead to a correct result.

Horn clause logic An implementation ofmost of predicate logic and the
basis of the Prolog programming language.

Hypothesis A prediction, in the form of a rule-like generaliza-
tion based on substantive legal considerations, of how
a legal issue should or may reasonably be decided
given certain conditions.

Hypothetical An imagined or made-up situation that involves a
hypothesis such as a proposed test, and which is
designed to explore a test’s meaning or challenge it
as too broad or too narrow.

Intensional definition Specifies the necessary and sufficient conditions for
being an instance of the concept.

Intermediate legal concept (ILC) A rule’s open-textured legal term whose mean-
ing is subject to argument.

Inverted index A common information retrieval system data struc-
ture that lists features appearing in any texts stored in
the database and for each feature, a record of all doc-
uments in which the feature appears, their locations,
and frequency.

Isomorphism When there is a one-to-one correspondence between
the rules in a formal model and the sections of
legislation modeled.

Legal factor A kind of expert knowledge of the commonly
observed collections, or stereotypical patterns, of facts
that tend to strengthen or weaken a plaintiff’s argu-
ment in favor of a legal claim.

Legal text analytics Also known as legal text mining: Automated discov-
ery of knowledge in archives of legal text data using
linguistic, statistical, and ML techniques.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 398 — #6

398 Glossary

Lex Specialis Maxim of interpretation according to which more
specific legal rules have priority over more general
rules.

Logistic regression A statistical learning algorithm that predicts the odds
of being an instance of a category based on the values
of independent variables (predictors). It employs an
iterative statistical procedure to estimate weights for
the predictors.

Lucene An Apache open-source text search engine library
that supports implementing document-term matri-
ces, as well as indexing, retrieval, and ranking func-
tions.

LUIMA A UIMA-based type system adapted to the legal
domain. It focuses on concepts, relations, and men-
tions for identifying argumentation roles of sentences
in judicial decisions useful for the task of legal infor-
mation retrieval.

Machine learning (ML) Computer programs that can learn to make
predictions based on data.

Majority-class baseline Baseline that predicts the majority class no matter
what the facts of the new problem.

Mean average precision (MAP) The average over the set of all queries of the
AP for each query.

Mentions In a type system, a type capturing ways in which
concepts and conceptual relations are referred to or
manifested in domain texts.

Model In ML a structure that generalizes a set of data for
description or prediction and that can be used as a
classifier.

Monotonic reasoning Logic in which a proposition once proven can never
be withdrawn.

n-grams A contiguous sequence of n items (e.g., words) from
a given text sequence.

Network analysis In information retrieval, drawing inferences about
relevance of a document based on links and link
weights of a document or its concepts in a network.

Non-monotonic reasoning Logic in which inferences may change as informa-
tion is added or becomes invalid. A proposition once
proven may be withdrawn.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 399 — #7

Glossary 399

Normalized discounted
cumulative gain

(NDCG) A measure of ranking performance by
cumulating each relevant document’s contribution
to the overall quality of a ranking depending on
where it is ranked relative to the ideal ranking.

Ontology A general, formal specification of the concepts corre-
sponding to the objects in a domain, their relations,
and properties.

Overfitting When a ML model is too flexible so that it fits
random variation in data as if it were a structural
feature.

Point estimate In a statistical estimate, the most likely value for a
characteristic of the population.

Precision (P) The ratio of the number of positive instance pre-
dictions that are correct over the total number of
positive instance predictions.

Predicate logic Logic, also known as predicate calculus or first-
order logic, employing logical connectives and sepa-
rate symbols for predicates, subjects, and quantifiers.
Extends propositional logic by representing structure
of propositions.

Presuppositional
Information

In LUIMA, includes factual and linguistic concepts,
relations, and mentions related specifically to the
regulated domain.

Pretrial discovery Processing law suit parties’ requests for materials in
the hands of opponents and others to reveal facts and
develop evidence for trial.

Probabilistic latent
semantic analysis

(PLSA) A statistical method for extracting and repre-
senting words’ contextual-usage meanings based on a
large corpus of text. Contexts in which words appear
or not in the corpus determine the similarity of their
meanings.

Proof standard The level of certainty required to establish a proposi-
tion for purposes of an argument.

Propositional logic Logic employing logical connectives and symbols
that stand for whole propositions.

Protocols Provide criteria and examples that specify linguis-
tic or logical cues for human annotators to use in
annotating texts.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 400 — #8

400 Glossary

Random forests of
decision trees

(RFDT) A ML technique replaces a single decision
tree by averaging over an ensemble of decision trees
in order to achieve greater diversity of sources in
prediction.

Rebuttals Arguments that are pro and con a particular con-
clusion. Weighing the arguments and applying proof
standards resolve the conflict.

Recall (R) The ratio of positive case predictions that are
correct over the number of cases that were positive.

Receiver operating
characteristic

(ROC) A ML metric for evaluating a binary classi-
fier, an ROC curve is a plot of the true positive rate
against the false positive rate for the different possible
decision thresholds.

Relevance feedback In information retrieval, a functionality that enables
users to indicate which of the documents returned
in response to a query are relevant and best represent
what the user seeks.

Relevance hypothesis In e-discovery, a litigator’s theory or abstract descrip-
tion of subject matter which, if found in a document,
makes the document relevant.

Reliability Reliability in annotation refers to the level of agree-
ment of independent (usually) human coders in
assigning a label to the same piece of text.

Reranking Functionality in information retrieval system to
reorder documents to maximize their responsiveness
to a user’s query.

Semantic net Graph comprising nodes, which represent concepts
(including both legal concepts and facts) and arcs
representing relations between concepts.

Sensemaking Organizing and representing complex information
sets to address the sense maker’s problem.

Simulated annealing A computational technique for finding a global maxi-
mumof a function such as confidence while avoiding
local maxima that are not as great.

Spreading activation In information retrieval with a citation network, a
process in which the activated nodes associated with
query terms send activation to the nodes to which
they are linked.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 401 — #9

Glossary 401

Statistical estimate Estimating a characteristic of population by drawing
a statistical sample, determining the proportion of
the elements in the sample that have the characteris-
tic, and applying that ratio to the whole population.

Statistical sample Sample in which some number of elements are
drawn at random from the population.

Statutory analysis Process of determining if a statute applies, how it
applies, and the effect of this application.

Statutory network diagram System of statutes represented as a network or graph
of the relations between reference concepts referred
to by, and subject to, regulation across multiple
statutes.

Statutory ontology A taxonomy of the classes of normative concepts
employed in a statute, their relations to other nor-
mative classes, as well as their relations to classes of
concepts of the regulated domain’s subject matter.

Subsumption Taxonomic reasoning that something is a member of
a more general class using an ontology of concepts
organized hierarchically.

Supervised machine
learning

ML methods that infer a classification model from
labeled training data. The training data comprise a
set of examples that have been assigned outcomes.

Support vector machine (SVM) A ML technique that applies statistical crite-
ria to find boundaries between positive and negative
examples of a category or class.

Teleological reasoning Reasoning that takes into account the purposes and
values underlying legal rules.

Term vector A representation of a document in terms of its words,
citations, indexing concepts, or other features. The
term vector is an arrow from the origin to the point
representing the document in a large dimensional
space with a dimension corresponding to each fea-
ture in the corpus.

tf/idf In information retrieval systems, a weight propor-
tional to how many times a related term appears
in a document’s text (i.e., the term frequency (tf))
and inversely related to the number of times the
term appears in the corpus (i.e., its inverse document
frequency (idf)).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Glossary” — 2017/5/27 — 12:28 — page 402 — #10

402 Glossary

Type system An ontology for annotating (marking up) texts in
terms of a hierarchy of concepts and relations so
that an annotation pipeline can automatically assign
semantics to regions of text.

UIMA (Unstructured Information Management Architec-
ture) An open-source Apache framework for ques-
tion answering systems in which text annotators are
organized into a text-processing pipeline that assigns
semantics to regions of text.

Undercutting argument An argument that questions another argument’s
applicability.

Undermining argument An argument that contradicts the premises of another
argument.

Unsupervised machine
learning

ML techniques such as clustering algorithms that
infer groupings of unlabeled instances based on their
content.

Use case In system design, a series of expected interactions
between a user and the system that would enable the
user to achieve a goal or solve a type of problem.

Vaccine/Injury Project (V/IP) Project and corpus, developed by theResearch
Laboratory for Law, Logic and Technology (LLT
Lab), Maurice A. Deane School of Law at Hofstra
University, comprising Court of Federal Claims
decisions whether claims for compensation for
vaccination-related injuries comply with the require-
ments of the National Vaccine Injury Compensation
Program.

Vector space similarity (VSS) The similarity among documents or queries in
a vector space as measured by the Euclidean distance
between the endpoints of the term vectors (or by the
cosine of the angle between the term vectors).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.013
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:31:26, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.013
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 403 — #1

Bibliography

A2J. 2012. A2J Author. www.kentlaw.iit.edu/institutes-centers/center-for-access-to-justice-and-
technology/a2j-author (accessed January 30, 2015).

ACL-AMW. 2016. 3d Workshop on Argument Mining at the Association of Computational
Linguistics (ACL 2016). http://argmining2016.arg.tech/ (accessed May 12, 2016).

Aharoni, Ehud, Alzate, Carlos, Bar-Haim, Roy, Bilu, Yonatan, Dankin, Lena, Eiron, Iris,
Hershcovich, Daniel, and Hummel, Shay. 2014b. Claims on demand – an initial
demonstration of a system for automatic detection and polarity identification of context
dependent claims in massive corpora. COLING 2014, 6.

Aharoni, Ehud, Polnarov, Anatoly, Lavee, Tamar, Hershcovich, Daniel, Levy, Ran, Rinott,
Ruty, Gutfreund, Dan, and Slonim, Noam. 2014a. A benchmark dataset for automatic
detection of claims and evidence in the context of controversial topics. ACL 2014,
64–8.

Al-Kofahi, Khalid, Tyrrell, Alex, Vachher, Arun, and Jackson, Peter. 2001. A machine learn-
ing approach to prior case retrieval. Pages 88–93 of: Proceedings of the 8th International
Conference on Artificial Intelligence and Law. ICAIL ’01. New York, NY: ACM.

Aleven, Vincent. 1997. Teaching Case-based Argumentation through a Model and Examples.
Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA.

Aleven, Vincent. 2003. Using background knowledge in case-based legal reasoning: a compu-
tational model and an intelligent learning environment. Artificial Intelligence, 150(1–2),
183–237.

Alias-i. 2008. Alias-i. Lingpipe 4.1.0. http://alias-i.com/lingpipe (accessed July 22, 2015).
Allen, Layman E. and Engholm, C. Rudy. 1978. Normalized legal drafting and the query

method. Journal of Legal Education, 29, 380–412.
Allen, Layman E. and Saxon, Charles. 1987. Some problems in designing expert systems to

aid legal reasoning. Pages 94–103 of: Proceedings of the 1st International Conference on
Artificial Intelligence and Law. New York, NY: ACM.

Araszkiewicz, Michał, Łopatkiewicz, Agata, and Zienkiewicz, Adam. 2013. Factor-based par-
ent plan support system. Pages 171–5 of: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Law. New York, NY: ACM.

Ashley, Kevin D. 1990. Modeling Legal Arguments: Reasoning with Cases and Hypotheticals.
Cambridge, MA: MIT Press.

Ashley, KevinD. 1991. Reasoning with cases and hypotheticals inHYPO. International Journal
of Man–Machine Studies, 34(6), 753–96.

403
Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 404 — #2

404 Bibliography

Ashley, Kevin D. 2000. Designing electronic casebooks that talk back: the cato program.
Jurimetrics, 40, 275–319.

Ashley, Kevin D. 2009a. Ontological requirements for analogical, teleological, and hypothet-
ical legal reasoning. Pages 1–10 of: Proceedings of the 12th International Conference on
Artificial Intelligence and Law. New York, NY: ACM.

Ashley, Kevin D. 2009b. Teaching a process model of legal argument with hypotheticals.
Artificial Intelligence and Law, 17(4), 321–70.

Ashley, Kevin D. 2011. The case-based reasoning approach: ontologies for analogical legal
argument. Pages 99–115 of: Approaches to Legal Ontologies. Dordrecht: Springer.

Ashley, Kevin D. 2012. Teaching law and digital age legal practice with an AI and Law seminar.
Chicago.-Kent Law Review, 88, 783.

Ashley, Kevin D., Bjerke Ferrell, Elizabeth, Potter et al. 2014. Statutory network analysis plus
information retrieval. Pages 1–7 of: Second Workshop on Network Analysis in Law, 27th
Annual Conference on Legal Knowledge and Information Systems (JURIX 2014). Krakow,
December 2014.

Ashley, Kevin D. and Bridewell, Will. 2010. Emerging AI & Law approaches to automat-
ing analysis and retrieval of electronically stored information in discovery proceedings.
Artificial Intelligence and Law, 18(4), 311–20.

Ashley, Kevin D. and Brüninghaus, Stefanie. 2006. Computer models for legal prediction.
Jurimetrics, 46(3), 309–52.

Ashley, Kevin D. and Brüninghaus, Stefanie. 2009. Automatically classifying case texts and
predicting outcomes. Artificial Intelligence and Law, 17(2), 125–65.

Ashley, Kevin D. and Rissland, Edwina L. 2003. Law, learning and representation. Artificial
Intelligence, 150(1–2), 17–58.

Ashley, KevinD. andWalker, Vern. 2013. From information retrieval (IR) to argument retrieval
(AR) for legal cases: report on a baseline study. Pages 29–38 of: Proceedings of the 26th
Annual Conference on Legal Knowledge and Information Systems (JURIX 2013). IOS
Press: Amsterdam.

Ashworth, Earline Jennifer. 1968. Propositional logic in the sixteenth and early seventeenth
centuries. Notre Dame Journal of Formal Logic, 9(2), 179–92.

Atkinson, Katie and Bench-Capon, Trevor. 2007. Argumentation and standards of proof. Pages
107–16 of: Proceedings of the 11th International Conference on Artificial Intelligence and
Law. New York, NY: ACM.

Attaran, Mohsen. 2004. Exploring the relationship between information technology and
business process reengineering. Information and Management, 41(5) 585–96.

Bach, Ngo Xuan, Minh, Nguyen Le, Oanh, Tran Thi, and Shimazu, Akira. 2013. A two-
phase framework for learning logical structures of paragraphs in legal articles. ACM
Transactions on Asian Language Information Processing (TALIP), 12(1), 3:1–3:32.

Bansal, Apoorva, Bu, Zheyuan, Mishra, Biswajeet, Wang, Silun, Ashley, Kevin, and Grab-
mair, Matthias. 2016. Document Ranking with Citation Information and Oversampling
SentenceClassification in the LUIMAFramework. Pages 33–42 of: Floris Bex and Serena
Villata (eds.), Legal Knowledge and Information Systems: JURIX 2016: The Twenty-Ninth
Annual Conference. Amsterdam: IOS Press.

Bauer, Robert S., Jade, Teresa, Hedin, Bruce, and Hogan, Chris. 2008. Automated legal sense-
making: the centrality of relevance and intentionality. In: Proceedings of the Second
International Workshop on Supporting Search and Sensemaking for Electronically Stored
Information inDiscovery Proceedings (DESI II). http://discovery.ucl.ac.uk/9131/ (accessed
June 12, 2016).

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 405 — #3

Bibliography 405

Beck, S. 2014. Emerging Technology Shapes Future of Law. www.americanlawyer.com/id=
1202664266769/Emerging-Technology-Shapes-Future-of-Law (accessed September 9,
2014).

Bench-Capon, Trevor. 1991. Exploiting isomorphism: development of a KBS to support British
coal insurance claims. Pages 62–68 of: Proceedings of the 3rd International Conference on
Artificial Intelligence and Law. New York, NY: ACM.

Bench-Capon, Trevor 2003. Persuasion in practical argument using value-based argumenta-
tion frameworks. Journal of Logic and Computation, 13(3), 429–48.

Bench-Capon, Trevor and Sartor, Giovanni. 2003. A model of legal reasoning with cases
incorporating theories and values. Artificial Intelligence, 150(1), 97–143.

Bench-Capon, Trevor and Visser, Pepijn. 1997. Ontologies in legal information systems: the
need for explicit specifications of domain conceptualisations. Pages 132–41 of: Proceedings
of the 6th International Conference on Artificial Intelligence and Law. ICAIL ’97. New
York, NY: ACM.

Berkman Center for Internet and Society, Harvard Law School Library, and Harvard Library
Lab. 2016. H2O Guide: Overview. https://h2o.law.harvard.edu/p/overview_help (accessed
February 18, 2016).

Berman, Donald H. and Hafner, Carole D. 1988. Obstacles to the development of logic-based
models of legal reasoning. Pages 183–214 of: Walter, Charles (ed.), Computer Power and
Legal Language. Westport, CT: Greenwood Press.

Berman, Donald H. and Hafner, Carole D. 1993. Representing teleological structure in case-
based legal reasoning: themissing link. Pages 50–9 of: Proceedings of the 4th International
Conference on Artificial Intelligence and Law. New York, NY: ACM.

Bex, Floris J. 2011. Arguments, Stories and Criminal Evidence: A Formal Hybrid Theory, vol.
92. Dordrecht: Springer Science & Business Media.

Biagioli, Carlo, Francesconi, Enrico, Passerini, Andrea, Montemagni, Simonetta, and Soria,
Claudia. 2005. Automatic semantics extraction in law documents. In: ICAIL ’05: 7th
International Conference on AI and Law. New York, NY: ACM.

Białecki, Andrzej, Muir, Robert, and Ingersoll, Grant. 2012. Apache lucene 4. Pages 17–24 of:
SIGIR 2012 Workshop on Open Source Information Retrieval.

Bing, Jon. 1987. Designing text retrieval systems for conceptual searching. Pages 43–51 of:
Proceedings of the 1st International Conference on Artificial Intelligence and Law. ICAIL
’87. New York, NY: ACM.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. New York:
Springer.

Blair, David C. and Maron, M. E. 1985. An evaluation of retrieval effectiveness for a full-text
document-retrieval system. Communications of the ACM, 28(3), 289–99.

Blecking, Anja. 2014. Classroom salon – an innovative method for investigating student
learning. In: Kendhammer, Lisa K. and Murphy, Kristen L. (eds.), Innovative Uses of
Assessments for Teaching and Research. Washington, DC: American Chemical Society.

Boella, Guido, Di Caro, Luigi, Lesmo, Leonardo, Rispoli, Daniele, and Robaldo, Livio. 2012.
Multi-label classification of legislative text into EuroVoc. In: Schäfer, Burkhard (ed.),
JURIX 2012. Amsterdam: IOS Press.

Boella, Guido, Di Caro, Luigi, Humphreys et al. 2016. Eunomos, a legal document and
knowledge management system for the web to provide relevant, reliable and up-to-date
information on the law. Artificial Intelligence and Law, 24(3), 245–83.

Brachman, Ronald and Levesque, Hector. 2004. Knowledge Representation and Reasoning.
Amsterdam: Elsevier.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 406 — #4

406 Bibliography

Branting, L. Karl. 1991. Building explanations from rules and structured cases. International
Journal of Man–Machine Studies, 34(6), 797–837.

Branting, L. Karl. 1999. Reasoning with Rules and Precedents. Dordrecht, Holland: Kluwer,
pp. 8–28.

Breaux, Travis D. 2009. Legal Requirements Acquisition for the Specification of Legally
Compliant Information Systems. Ann Arbor, MI: ProQuest.

Breaux, Travis D. and Gordon, David G. 2011. Regulatory requirements as open systems:
structures, patterns and metrics for the design of formal requirements specifications.
Carnegie Mellon University Technical Report CMU-ISR-11-100.

Breaux, Travis D. and Gordon, David G. 2013. Regulatory requirements traceability and
analysis using semi-formal specifications. Pages 141–57 of: Requirements Engineering:
Foundation for Software Quality. Dordrecht: Springer.

Breaux, Travis D., Hibshi, Hanan, and Rao, Ashwini. 2014. Eddy, a formal language for
specifying and analyzing data flow specifications for conflicting privacy requirements.
Requirements Engineering, 19(3), 281–307.

Breaux, Travis D. and Schaub, Florian. 2014. Scaling requirements extraction to the crowd:
experiments with privacy policies. Pages 163–72 of:Requirements Engineering Conference
(RE), 2014 IEEE 22nd International. IEEE.

Breaux, Travis D., Smullen, Daniel, and Hibshi, Hanan. 2015. Detecting repurposing and
over-collection in multi-party privacy requirements specifications. Pages 166–75 of:
Requirements Engineering Conference (RE), 2015 IEEE 23rd International. New York,
NY: IEEE.

Breaux, Travis D., Vail, Matthew, and Anton, Annie. 2006. Towards regulatory compliance:
extracting rights and obligations to align requirements with regulations. Pages 46–55 of:
Proceedings of RE06. Washington, DC: IEEE Computer Society.

Breuker, Joost, Elhag, Abdullatif, Petkov, Emil, and Winkels, Radboud. 2002. Ontologies for
legal information serving and knowledge management. Pages 1–10 of: Legal Knowledge
and Information Systems, Jurix 2002: The Fifteenth Annual Conference. Amsterdam: IOS
Press.

Breuker, Joost and Hoekstra, Rinke. 2004. Epistemology and Ontology in Core Ontologies:
FOLaw and LRI-Core, two core ontologies for law. Pages 15–27 of: Proceedings of the
EKAW04 Workshop on Core Ontologies in Ontology Engineering. Northamptonshire,
UK.

Breuker, Joost, Valente, André, and Winkels, Radboud. 2004. Legal ontologies in knowledge
engineering and information management. Artificial Intelligence and Law, 12(4),
241–77.

Brewka, Gerhard and Gordon, Thomas F. 2010. Carneades and abstract dialectical
frameworks: a reconstruction. Pages 3–12 of: Proceedings of the 2010 Conference on Com-
putational Models of Argument: Proceedings of COMMA 2010. Amsterdam: IOS Press.

Buckland, Michael K. and Gey, Fredric C. 1994. The relationship between recall and
precision. JASIS, 45(1), 12–19.

Burges, Chris, Shaked, Tal, Renshaw, Erin et al. 2005. Learning to rank using gradient
descent. Pages 89–96 of: Proceedings of the 22nd International Conference on Machine
Learning. ICML ’05. New York, NY: ACM.

Büttcher, Stefan, Clarke, Charles L. A., and Cormack, Gordon V. 2010. Information
Retrieval: Implementing and Evaluating Search Engines. Cambridge, MA: MIT Press.

Callan, James, Croft, Bruce W., and Harding, Stephen M. 1992. The INQUERY retrieval
system. Pages 78–83 of: In Proceedings of the Third International Conference on Database
and Expert Systems Applications. Dordrecht: Springer-Verlag.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 407 — #5

Bibliography 407

Carnielli, Walter A. and Marcos, Joao. 2001. Ex contradictione non sequitur quodlibet. Pages
89–109 of: Proceedings of the Advanced Reasoning Forum Conference, vol. 1. Berkeley
and Monte Rio, California, USA.

Casemaker. 2015. Casemaker. www.casemaker.us/ProductsStateBarConsortium.aspx
(accessed August 12, 2015).

Centers for Disease Control and Prevention. 2015. Vaccine Acronyms & Abbreviations.
www.cdc.gov/vaccines/about/terms/vacc-abbrev.htm (accessed July 22, 2015).

Cervone, Luca, Di Iorio, Angelo, Palmirani, Monica, and Vitali, Fabio. 2015. Akoma Ntoso.
www.akomantoso.org/akoma-ntoso-in-detail/what-is-it/ (accessed October 8, 2015).

Charniak, Eugene. 1991. Bayesian networks without tears. AI Magazine, 12(4), 50–63.
Che, Bingqing, Qiang, Meng, and Yichi, Yepeng. 2015. Capstone Project Report: LUIMA.
Chorley, Alison and Bench-Capon, Trevor. 2005a. AGATHA: automated construction of

case law theories through heuristic search. Pages 45–54 of: Proceedings of the 10th
International Conference on Artificial Intelligence and Law. New York, NY: ACM.

Chorley, Alison and Bench-Capon, Trevor. 2005b. AGATHA: using heuristic search to
automate the construction of case law theories. Artificial Intelligence and Law, 13(1),
9–51.

Chorley, Alison and Bench-Capon, Trevor. 2005c. An empirical investigation of reasoning
with legal cases through theory construction and application. Artificial Intelligence and
Law, 13(3–4), 323–71.

Chu-Carroll, Jennifer, Brown, Eric W., Lally, Adam, and Murdock, J. William. 2012.
Identifying implicit relationships. IBM Journal of Research and Development, 56(3.4),
12:1–12:10.

Clement, Kevin. 2016. Propositional logic. In: The Internet Encyclopedia of Philosophy. IEP.
www.iep.utm.edu/ (accessed August 4, 2016).

Cohen, Jacob 1960. A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1), 37–46.

Cutler, Kim-Mai. 2015. YC’s ROSS Intelligence Leverages IBM’s Watson to Make Sense
of Legal Knowledge. http://techcrunch.com/2015/07/27/ross-intelligence/ (accessed
December 31, 2015).

Dabney, Daniel P. 1993. Statistical Modeling of Relevance Judgments for Probabilistic
Retrieval of American Case Law. Berkeley, CA: University of California.

Daelemans, Walter, Zavrel, Jakub, van der Sloot, Ko, and van den Bosch, Anton. 2004.
TiMBL: Tilburg Memory based Learner, Version 5.02 (now 6.3). http://ilk.uvt.nl/timbl/
(accessed July 19, 2015).

Daniels, Jody J. and Rissland, Edwina L. 1997a. Finding legally relevant passages in case
opinions. Pages 39–46 of: Proceedings of the 6th International Conference on Artificial
Intelligence and Law. ICAIL ’97. New York, NY: ACM.

Daniels, Jody J. and Rissland, Edwina L. 1997b. What you saw is what you want: using cases
to seed information retrieval. Pages 325–36 of: Proceedings of the Second International
Conference on Case-Based Reasoning. Providence, RI: Springer.

Daudaravicius, Vidas. 2012. Automatic multilingual annotation of EU legislation with
EuroVoc descriptors. Pp. 14–20 of: EEOP2012: Exploring and Exploiting Official
Publications Workshop Programme. Istanbul, Turkey.

de Maat, Emile, Krabben, Kai, and Winkels, Radboud. 2010. Machine learning versus knowl-
edge based classification of legal texts. In: Winkels, R. (ed.), JURIX 2010. Amsterdam:
IOS Press.

de Maat, Emile and Winkels, Radboud. 2007. Categorisation of norms. Pages 79–88 of:
JURIX 2007. Amsterdam: IOS Press.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 408 — #6

408 Bibliography

de Maat, Emile and Winkels, Radboud. 2009. A next step towards automated modelling
of sources of law. Pages 31–9 of: Proceedings of the 12th International Conference on
Artificial Intelligence and Law. ICAIL ’09. New York, NY: ACM.

Deisher-Edwards, Julie. 2015. TILABuddy: An Automated Approach to Corporate Compliance.
Unpublished student course paper on file with author.

Desatnik, Eric. 2016. The IBM Watson AI XPRIZE, a Cognitive Computing Competition.
www.xprize.org/AI (accessed May 21, 2016).

Dick, Judith and Hirst, Graeme. 1991. A case-based representation of legal text for conceptual
retrieval. In: Workshop on Language and Information Processing, American Society for
Information Science. Washington, DC.

Dietrich, Antje, Lockemann, Peter C., and Raabe, Oliver. 2007. Agent approach to online
legal trade. Pages 177–94 of: Conceptual Modelling in Information Systems Engineering.
Dordrecht: Springer.

Dowden, Bradley. 2016. Liar’s paradox. In: The Internet Encyclopedia of Philosophy. IEP.
www.iep.utm.edu/ (accessed August 4, 2016).

Dukeminier, Jesse, Krier, James, Alexander, Gregory, and Shill, Michael. 2010. Property.
New York: Aspen.

Dung, Phan Minh. 1995. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2), 321–57.

Dvorsky, George. 2014. IBM’s Watson Can Now Debate Its Opponents (Demo at 45.47 Minute
Mark). http://io9.com/ibms-watson-can-now-debate-its-opponents-1571837847 (accessed
February 1, 2015).

Eckholm, Erik. 2015. Harvard Law Library Readies Trove of Decisions for Digital Age.
www.nytimes.com/2015/10/29/us/harvard-law-library-sacrifices-a-trove-for-the-sake-of-a-
free-database.html?_r=0 (accessed December 30, 2015).

Epstein, Edward, Schor, Marshall, Iyer, Bhavani, et al. 2012. Making Watson fast. IBM
Journal of Research and Development, 56(3.4), 15:1–15:12.

EuroVoc. 2014. EuroVoc. http://eurovoc.europa.eu/drupal/ (accessed August 27, 2014).
Fagan, Frank. 2016. Big data legal scholarship: toward a research program and practitioners

guide. Virginia Journal of Law and Technology, 20, 1–81.
Falakmasir, Mohammad. 2016. Comprehensive Exam Answer: Argument Mining (Revised).

University of Pittsburgh Intelligent Systems Program.
Feller, Robert. 2015. Judicial review of administrative decisions and procedure. In:

Philip Weinberg and William R. Ginsberg (eds.), Environmental Law and Regulation
in New York 3:48 (2nd edn.). 9 N.Y.Prac.: New York Practice Series – Environmental
Law and Regulation in New York.

Feng, Vanessa Wei and Hirst, Graeme. 2011. Classifying arguments by scheme. Pages 987–96
of: Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies – Volume 1. Association for Computational
Linguistics.

Ferrucci, David A. 2012. Introduction to “This is Watson.” IBM Journal of Research and
Development, 56(3/4), 1:1–1:15.

Ferrucci, David A., Brown, Eric W., Chu-Carroll, Jennifer et al. 2010. Building Watson: an
overview of the DeepQA Project. AI Magazine, 31(3), 59–79.

Finkel, Jenny, Rafferty, Anna, Kleeman, Alex, and Manning, Christopher. 2003–14. Stanford
Classifier. http://nlp.stanford.edu/software/classifier.shtml (accessed July 22, 2015).

Flood,Mark D. andGoodenough, Oliver R. 2015. Contract as automation: the computational
representation of financial agreements. Office of Financial Research Working Paper,

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 409 — #7

Bibliography 409

15-04. https://financialresearch.gov/working-papers/files/OFRwp-2015-04_Contract-as-
Automaton-The-Computational-Representation-of-Financial-Agreements.pdf (accessed
July 29, 2016).

Francesconi, Enrico. 2009. An approach to legal rules modelling and automatic learn-
ing. Pages 59–68 of: Proceedings of the 2009 Conference on Legal Knowledge and
Information Systems: JURIX 2009: The Twenty-Second Annual Conference. Amsterdam,
The Netherlands : IOS Press.

Francesconi, Enrico, Montemagni, Simonetta, Peters, Wim, and Tiscornia, Daniela. 2010.
Integrating a bottom-up and top-down methodology for building semantic resources
for the multilingual legal domain. Pages 95–121 of: Francesconi, Enrico, Montemagni,
Simonetta, Peters, Wim, and Tiscornia, Daniela (eds.), Semantic Processing of Legal
Texts. Berlin, Heidelberg: Springer-Verlag.

Francesconi, Enrico and Passerini, Andrea. 2007. Automatic classification of provisions in
legislative texts. Artificial Intelligence and Law, 15, 1–17.

Francesconi, Enrico and Peruginelli, Ginevra. 2008. Integrated access to legal literature
through automated semantic classification. AI and Law, 17, 31–49.

Freitag, Dayne. 2000. Machine learning for information extraction in informal domains.
Machine learning, 39(2–3), 169–202.

Fuller, Lon L. 1958. Positivism and fidelity to law: a reply to Professor Hart. Harvard Law
Review, 630–72.

Gangemi, Aldo, Guarino, Nicola, Masolo, Claudio, Oltramari, Alessandro, and Schneider,
Luc. 2002. Sweetening ontologies withDOLCE. Pages 166–81 of:Knowledge Engineering
and Knowledge Management: Ontologies and the Semantic Web. Dordrecht: Springer.

Gardner, Anne vdL. 1985. Overview of an artificial intelligence approach to legal rea-
soning. Pages 247–74 of: Computer Power and Legal Reasoning. St. Paul, MN: West
Publishing Co.

Gardner, Anne vdL. 1987. An Artificial Intelligence Approach to Legal Reasoning. Cambridge,
MA: MIT Press.

Gonçalves, Teresa and Quaresma, Paulo. 2005. Is linguistic information relevant for the
classification of legal texts? Pages 168–76 of: Proceedings of the 10th International
Conference on Artificial Intelligence and Law. New York, NY: ACM.

Gordon, David G. and Breaux, Travis D. 2013. A cross-domain empirical study and legal
evaluation of the requirements water marking method. Requirements Engineering, 18(2),
147–73.

Gordon, Thomas F. 1987. Some problems with prolog as a knowledge representation language
for legal expert systems. International Review of Law, Computers & Technology, 3(1),
52–67.

Gordon, Thomas F. 2008a. The legal knowledge interchange format (LKIF). Estrella
deliverable d4, 1–28 (accessed March 22, 2017).

Gordon, Thomas F. 2008b. Constructing legal arguments with rules in the legal knowledge
interchange format (LKIF). Pages 162–84 of: Computable Models of the Law. Dordrecht:
Springer.

Gordon, Thomas F. 2008c. Hybrid reasoning with argumentation schemes. Pages 543
of: Proceedings of the 2008 Conference on Knowledge-based Software Engineering:
Proceedings of the Eighth Joint Conference on Knowledge-based Software Engineering.
Amsterdam: IOS Press.

Gordon, Thomas F. 2014. Software engineering for research on legal argumentation. In:
Proceedings of the 1st International Workshop for Methodologies for Research on Legal
Argumentation (MET-ARG). (On file with author.)

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 410 — #8

410 Bibliography

Gordon, Thomas F. 2015a. Carneades 3.7 User Manual. https://carneades.github.io/manuals/
Carneades3.7/carneades-3.7-manual.pdf (accessed November 16, 2015).

Gordon, Thomas F. 2015b. Carneades Tools for Argument (Re)construction, Evaluation, Map-
ping and Interchange. http://carneades.github.io/Carneades/ (accessed November 23,
2015).

Gordon, Thomas F., Governatori, Guido, and Rotolo, Antonino. 2009. Rules and norms:
requirements for rule interchange languages in the legal domain. Pages 282–96 of: Rule
Interchange and Applications. Dordrecht; Springer.

Gordon, Thomas F., Prakken, Henry, and Walton, Douglas. 2007. The Carneades model of
argument and burden of proof. Artificial Intelligence, 171(10–5), 875–96. Argumentation
in Artificial Intelligence.

Gordon, Thomas F. and Walton, Douglas. 2006. The Carneades argumentation framework-
using presumptions and exceptions to model critical questions. Pages 5–13 of: 6th
Computational Models of Natural Argument Workshop (CMNA), European Conference
on Artificial Intelligence (ECAI), Italy.

Gordon, Thomas F. and Walton, Douglas. 2009. Legal reasoning with argumentation
schemes. Pages 137–46 of: Proceedings of the 12th International Conference on Artificial
Intelligence and Law. New York, NY: ACM.

Governatori, Guido and Shek, Sidney. 2012 (August). Rule based business process compli-
ance. Pages 1–8 of: 6th International Rule Challenge @ RuleML 2012. CEUR Workshop
Proceedings. Volume 874. Paper 5.

Grabmair, Matthias. 2016. Modeling Purposive Legal Argumentation and Case Outcome
Prediction using Argument Schemes in the Value Judgment Formalism. Ph.D. thesis,
University of Pittsburgh, Pittsburgh, PA.

Grabmair, Matthias and Ashley, Kevin D. 2010. Argumentation with value judgments: an
example of hypothetical reasoning. Pages 67–76 of: Proceedings of the 2010 Conference
on Legal Knowledge and Information Systems: JURIX 2010: The Twenty-Third Annual
Conference. Amsterdam: IOS Press.

Grabmair, Matthias and Ashley, Kevin D. 2011. Facilitating case comparison using value
judgments and intermediate legal concepts. Pages 161–70 of: Proceedings of the
13th International Conference on Artificial intelligence and Law. New York, NY:
ACM.

Grabmair, Matthias, Ashley, Kevin, Chen, Ran. et al. 2015. Introducing LUIMA: an experi-
ment in legal conceptual retrieval of vaccine injury decisions using a UIMA type system
and tools. Pages 1–10 of: Proceedings of the 15th International Conference on Artificial
Intelligence and Law. ICAIL 2015. New York, NY: ACM.

Grabmair, Matthias, Ashley, Kevin D., Hwa, Rebecca, and Sweeney, P. M. 2011. Towards
extracting information from public health statutes using text classification and machine
learning. In: Atkinson, Katie M. (ed.), JURIX 2011: Proceedings of the Twenty-Fourth
Conference on Legal Knowledge and Information Systems. Amsterdam: IOS Press.

Grabmair, Matthias, Gordon, Thomas F., and Walton, Douglas. 2010. Probabilistic seman-
tics for the Carneades argument model using Bayesian networks. Pages 255–66 of:
Proceedings of the 2010 Conference on Computational Models of Argument: Proceedings
of COMMA 2010. Amsterdam: IOS Press.

Granat, Richard and Lauritsen, Marc. 2014. Teaching the technology of practice: the
10 top schools. Law Practice Magazine, 40(4) www.americanbar.org/publications/
law_practice_magazine/2014/july-august/teaching-the-technology-of-practice-the-10-top-
schools.html (accessed February 2, 2015).

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 411 — #9

Bibliography 411

Gray, Grayfred B. 1985. Statutes enacted in normalized form: the legislative experience in
Tennessee. Pages 467–93 of: Computer Power and Legal Reasoning. St. Paul, MN: West
Publishing.

Gray, Jeff. 2014. University of Toronto’s next lawyer: a computer program named Ross. The
Globe and Mail www.theglobeandmail.com/report-on-business/industry-news/the-law-
page/university-of-torontos-next-lawyer-a-computer-program-named-ross/article22054688/
(accessed February 3, 2015).

Grossman, Maura R. and Cormack, Gordon V. 2010. Technology-assisted review in
e-discovery can be more effective and more efficient than exhaustive manual review.
Richmond Journal of Law & Technology, 17, 1–48.

Grossman, Maura R. and Cormack, Gordon V. 2014. Grossman–Cormack glossary of
technology-assisted review. Federal Courts Law Review, 7, 85–112.

Gultemen, Dincer and van Engers, Thomas. 2014. Graph-based linking and visualization
for legislation documents (GLVD). Pages 67–80 of: Winkels, Radboud, Lettieri,
Nicola, and Faro, Sebastiano. (eds.), Network Analysis in Law. Collana: Diritto
Scienza Tecnologia/Law Science Technology Temi, 3. Napoli: Edizioni Scientifiche
Italiane.

Hachey, Ben and Grover, Claire. 2006. Extractive summarisation of legal texts. Artificial
Intelligence and Law, 14(4), 305–45.

Hafner, Carole. 1978. An information retrieval system based on a computer model of legal
knowledge. Ph.D. thesis, University of Michigan, Ann Arbor, MI. AAI7807057.

Hart, Herbert Lionel Adolphus. 1958. Positivism and the separation of law and morals.
Harvard Law Review, 71, 593–629.

Hashmi, Mustafa, Governatori, Guido, and Wynn, Moe Thandar. 2014. Normative require-
ments for business process compliance. Pages 100–16 of: Service Research and Innovation.
Dordrecht: Springer.

Henderson, William D. 2013. A blueprint for change. Pepperdine Law Review, 40(2), 461–507.
Henseler, Hans. 2010. Network-based filtering for large email collections in e-discovery.

Artificial Intelligence and Law, 18(4), 413–30.
Herring, David J. and Lynch, Collin. 2014. Measuring law student learning outcomes: 2013

lawyering class. UNM School of Law Research Paper.
Hoekstra, Rinke. 2010. The knowledge reengineering bottleneck. Semantic Web, 1(1,2), 111–15.
Hoekstra, Rinke and Boer, Alexander. 2014. A network analysis of Dutch regulations –

using the MetaLex Document Server. Pages 47–58 of: Winkels, Radboud, Lettieri,
Nicola, and Faro, Sebastiano (eds.), Network Analysis in Law. Collana: Diritto Scienza
Tecnologia/Law Science Technology Temi, 3. Napoli: Edizioni Scientifiche Italiane.

Hogan, Christopher, Bauer, Robert, and Brassil, Dan. 2009. Human-aided computer cogni-
tion for e-discovery. Pages 194–201 of: Proceedings of the 12th International Conference
on Artificial Intelligence and Law. New York, NY: ACM.

Hogan, Christopher, Bauer, Robert S., and Brassil, Dan. 2010. Automation of legal
sensemaking in e-discovery. Artificial Intelligence and Law, 18(4), 431–57.

Hu, Xia and Liu, Huan. 2012. Mining Text Data. Boston, MA: Springer US.
IBM Watson Developer Cloud Watson Services. 2015. IBM Watson Developer Cloud

Watson Services. www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/services
-catalog.html (accessed February 1, 2015).

IBM Watson Developer Cloud Watson Services. 2016. Alchemy Language. www.ibm.com/
smarterplanet/us/en/ibmwatson/developercloud/alchemy-language.html (accessed May
22, 2016).

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 412 — #10

412 Bibliography

Iron Tech Lawyer. 2015. The Program in Legal Technologies, Georgetown Law, Iron Tech
Lawyer. Georgetown Law School. www.law.georgetown.edu/academics/centers-institutes/
legal-profession/legal-technologies/iron-tech/index.cfm (accessed February 3, 2015).

Jackson, Brian. 2015. Meet Ross, the Watson-Powered “Super Intelligent” Attorney.
www.itbusiness.ca/news/meet-ross-the-watson-powered-super-intelligent-attorney/53376
(accessed December 31, 2015).

Jackson, Peter, Al-Kofahi, Khalid, Tyrrell, Alex, and Vachher, Arun. 2003. Information
extraction from case law and retrieval of prior cases. Artificial Intelligence, 150(1–2),
239–90. Artificial Intelligence and Law.

Jurafsky, Daniel and Martin, James. 2015. Classification: naive Bayes, logistic regression,
sentiment. Chapter 7, pages 1–28 of: Jurafsky, Daniel and Martin, James (eds.), Speech
and Language Processing. Stanford University. Draft of August 24, 2015, https://web
.stanford.edu/∼jurafsky/slp3/7.pdf (accessed September 29, 2016).

Kafura, Dennis. 2011. Notes on Petri Nets. http://people.cs.vt.edu/∼kafura/Computational
Thinking/Class-Notes/Petri-Net-Notes-Expanded.pdf (accessed August 9, 2016).

Kakwani, Nanak. 1980. On a class of poverty measures. Econometrica: Journal of the
Econometric Society, 437–46.

Katz, Daniel M. and Bommarito, Michael. 2014. Legal Analytics – Introduction to the Course.
www.slideshare.net/Danielkatz/legal-analytics-introduction-to-the-course-professor-
daniel-martin-katz-professor-michael-j-bommartio-ii-31350591 (accessed May 12, 2016).

Katz, Daniel M., Bommarito, Michael, and Blackman, Josh. 2014. Predicting the Behavior of
the United States Supreme Court: A General Approach (July 21, 2014). http://ssrn.com/
abstract=2463244 (accessed May 26, 2015).

Kelly, John E. and Hamm, Steve. 2013. Smart Machines: IBM’s Watson and the Era of
Cognitive Computing. New York, NY: Columbia University Press.

Kiyavitskaya, Nadzeya, Zeni, Nicola, Breaux, Travis D. et al. 2008. Automating the extraction
of rights and obligations for regulatory compliance. Pages 154–68 of: Conceptual
Modeling – ER 2008. Dordrecht: Springer.

Koetter, Falko, Kochanowski, Monika, Weisbecker, Anette, Fehling, Christoph, and
Leymann, Frank. 2014. Integrating compliance requirements across business and IT.
Pages 218–25 of: Enterprise Distributed Object Computing Conference (EDOC), 2014
IEEE 18th International. New York, NY: IEEE.

Kohavi, Ron. 1995. A study of cross-validation and bootstrap for accuracy estimation and
model selection. Pages 1137–43 of: Proceedings of the 14th International Joint Conference
on Artificial Intelligence – Volume 2. IJCAI’95. San Francisco, CA: Morgan Kaufmann
Publishers Inc.

Kohavi, Ron and Provost, Foster. 1998. Glossary of terms. Machine Learning, 30(2–3), 271–4.
Kritzer, Albert H. 2015. CISG Database. Institute of International Commercial Law, Pace

Law School. www.cisg.law.pace.edu/ (accessed February 4, 2015).
Landauer, Thomas K, Foltz, Peter W., and Laham, Darrell. 1998. An introduction to latent

semantic analysis. Discourse Processes, 25(2–3), 259–84.
Legal OnRamp. 2015. Legal OnRamp. www.legalonramp.com/ (accessed February 1, 2015).
LegalSifter. 2016.LegalSifter UseCases. www.legalsifter.com/use-cases (accessedMay 3, 2016).
Legaltech News. 2016. Legaltech News. www.legaltechnews.com/ (accessed September 19,

2016).
Levi, Edward H. 2013. An Introduction to Legal Reasoning. Chicago: University of Chicago

Press.
Levy, Ran, Bilu, Yonatan, Hershcovich, Daniel, Aharoni, Ehud, and Slonim, Noam. 2014.

Context dependent claim detection. Pages 1489–500 of: Proceedings of COLING 2014,

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 413 — #11

Bibliography 413

the 25th International Conference on Computational Linguistics: Technical Papers.
Dublin, Ireland.

Library, Harvard Law School. 2015. Free Legal Research Resources. http://guides.library
.harvard.edu/c.php?g=310432&p=2072006 (accessed February 3, 2015).

Lindahl, Lars. 2004. Deduction and justification in the law: the role of legal terms and
concepts. Ratio Juris, 17(2), 182–202.

Lippe, Paul and Katz, Dan. 2014. 10 Predictions about how IBM’s Watson will impact the
legal profession. ABA Journal www.abajournal.com/legalrebels/article/10_predictions_
about_how_ibms_watson_will_impact (accessed February 2, 2015).

Lippner, Jordan. 1995. Replacement players for the Toronto Blue Jays? Striking the appro-
priate balance between replacement worker law in Ontario, Canada, and the United
States. Fordham International Law Journal, 38, 2026–94.

Liu, Hongfang, Wu, Stephen, Tao, Cui, and Chute, Christopher. 2012. Modeling UIMA
type system using web ontology language: towards interoperability among UIMA-based
NLP tools. Pages 31–6 of: Proceedings of the 2nd International Workshop on Managing
Interoperability and CompleXity in Health Systems. New York, NY: ACM.

Llewellyn, Karl N. 1949. Remarks on the theory of appellate decision and the rules or canons
about how statutes are to be construed. Vanderbilt Law Review, 3, 395–408.

Lu, Qiang and Conrad, Jack. 2013. Next Generation Legal Search – It’s Already Here https://
blog.law.cornell.edu/voxpop/2013/03/28/next-generation-legal-search-itsalready-here
(accessed May 22, 2015).

MacCormick, Neil and Summers, Robert S. 1991. Interpreting Statutes: A Comparative
Study. Dartmouth Aldershot.

Machine Learning Group at the University of Waikato. 2015. Weka 3: Data Mining Software
in Java www.cs.waikato.ac.nz/ml/weka/ (accessed July 22, 2015).

Mackaay, Ejan and Robillard, Pierre. 1974. Predicting judicial decisions: the nearest neigh-
bour rule and visual representation of case patterns. Datenverarbeitung im Recht, 3,
302–31.

Mann, William C. and Thompson, Sandra A. 1987. Rhetorical Structure Theory: A
Theory of Text Organization. University of Southern California, Information Sciences
Institute.

Mart, Susan Nevelow. 2010. Relevance of results generated by human indexing and computer
algorithms: a study of West’s headnotes and key numbers and LexisNexis’s headnotes
and topics, The Law Library Journal, 102, 221–49.

McCallum, Andrew. 2004. Bow: A Toolkit for Statistical Language Modeling, Text Retrieval,
Classification and Clustering www.cs.cmu.edu/∼mccallum/bow/ (accessed July 19,
2015).

McCarty, L. Thorne. 1995. An implementation of Eisner v. Macomber. Pages 276–86 of:
Proceedings of the 5th International Conference on Artificial Intelligence and Law. New
York, NY: ACM.

McCarty, L. Thorne. 2007. Deep semantic interpretations of legal texts. Pages 217–24 of:
Proceedings of the 11th International Conference on Artificial Intelligence and Law. New
York, NY: ACM.

McCarty, L. Thorne and Sridharan, Natesa. 1981. The representation of an evolving system
of legal concepts: II. Prototypes and deformations. Pages 246–53 of: Proceedings of the
7th International Joint Conference on Artificial Intelligence – Volume 1. San Francisco,
CA: Morgan Kaufmann Publishers Inc.

McLaren, Bruce M. 2003. Extensionally defining principles and cases in ethics: an AI model.
Artificial Intelligence, 150(1), 145–81.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 414 — #12

414 Bibliography

Merriam-Webster’s Collegiate Dictionary. 2015. Merriam-Webster’s Collegiate Dictionary.
Springfield, MA: Merriam-Webster. http://search.credoreference.com/content/entry/
mwcollegiate/explanation/0 (accessed February 5, 2015).

Mimouni, Nada, Fernandez, Meritxell, Nazarenko, Adeline, Bourcier, Daniele, and Salotti,
Sylvie. 2014. A relational approach for information retrieval on XML legal sources. Pages
169–92 of: Winkels, Radboud, Lettieri, Nicola, and Faro, Sebastiano (eds.) Network
Analysis in Law. Collana: Diritto Scienza Tecnologia/Law Science Technology Temi,
3. Napoli: Edizioni Scientifiche Italiane.

Mitchell, Thomas. 2015. Generative and Discriminative Classifiers: Naive Bayes and Logis-
tic Regression www.cs.cmu.edu/∼tom/mlbook/NBayesLogReg.pdf (accessed July 14,
2015).

Mochales, Raquel and Moens, Marie-Francine. 2011. Argumentation mining. Artificial
Intelligence and Law, 19(1), 1–22.

Modgil, Sanjay and Prakken, Henry. 2014. The ASPIC+ framework for structured
argumentation: a tutorial. Argument & Computation, 5(1), 31–62.

Moens, Marie-Francine, Boiy, Erik, Palau, Raquel Mochales, and Reed, Chris. 2007. Auto-
matic detection of arguments in legal texts. Pages 225–30 of: Proceedings of the 11th Inter-
national Conference on Artificial Intelligence and Law. ICAIL ’07. New York, NY: ACM.

Mohri, Mehryar, Rostamizadeh, Afshin, and Talwalkar, Ameet. 2012. Foundations of Machine
Learning. Cambridge, MA: MIT Press.

Morelock, John T., Wiltshire, James S., Ahmed, Salahuddin, Humphrey, Timothy L.,
and Lu, X. Allen. 2004 (August 3). System and method for identifying facts and legal
discussion in court case law documents. US Patent 6,772,149.

Neota Logic. 2016. Neota Logic. www.neotalogic.com/ (accessed August 9, 2016).
Newman, Rick. 2014. IBM Unveils a Computer that can Argue. The Exchange.

http://finance.yahoo.com/blogs/the-exchange/ibm-unveils-a-computer-than-can-argue-
181228620.htm (accessed February 1, 2015).

Nigam, Kamal, Lafferty, John, and McCallum, Andrew. 1999. Using maximum entropy
for text classification. Pages 61–7 of: IJCAI-99 Workshop on Machine Learning for
Information Filtering, vol. 1. Stockholm, Sweden.

NIST/SEMATECH. 2016. NIST/SEMATECH e-Handbook of Statistical Methods
www.itl.nist.gov/div898/handbook/ (accessed May 30, 2016).

Noble, William S. 2006. What is a support vector machine? Nature Biotechnology, 24(12),
1565–7.

Oard, Douglas W. and Webber, William. 2013. Information retrieval for e-discovery.
Information Retrieval, 7(2–3), 99–237.

Oasis. 2016. Akoma Ntoso Naming Convention Version 1.0, Committee Specification
Draft 02/Public Review Draft 02, 04 May 2016 www.akomantoso.org/akoma-ntoso-in-
detail/what-is-it/ (accessed June 12, 2016).

Oberle, Daniel, Drefs, Felix, Wacker, Richard, Baumann, Christian, and Raabe, Oliver. 2012.
Engineering compliant software: advising developers by automating legal reasoning.
SCRIPTed, 9(2), 280–313.

Oh, Peter B. 2010. Veil-piercing. Texas Law Review, 89, 81–145.
Opsomer, Rob, Meyer, Geert De, Cornelis, Chris, and van Eetvelde, Greet. 2009. Exploiting

properties of legislative texts to improve classification accuracy. In: Governatori, Guido
(ed.), JURIX 2009: Proceedings of the Twenty-Second Conference on Legal Knowledge
and Information Systems. Amsterdam: IOS Press.

Palanque, Philippe A. and Bastide, Remi. 1995. Petri net based design of user-driven inter-
faces using the interactive cooperative objects formalism. Pages 383–400 of: Interactive
Systems: Design, Specification, and Verification. Dordrecht: Springer.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 415 — #13

Bibliography 415

Palmirani, Monica. 2011. Legislative changemanagement with Akoma-Ntoso. Pages 101–30 of:
Sartor, Giovanni, Palmirani, Monica, Francesconi, Enrico, and Biasiotti, Maria Angela
(eds.), Legislative XML for the Semantic Web. Law, Governance and Technology Series,
vol. 4. Dordrecht: Springer.

Pouliquen, Bruno, Steinberger, Raif, and Ignat, Camelia. 2006. Automatic Annotation
of Multi-lingual Text Collections with a Conceptual Thesaurus. arXiv preprint cs/
0609059.

Prager, John, Brown, Eric, Coden, Anni, and Radev, Dragomir. 2000. Question-answering
by predictive annotation. Pages 184–91 of: Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval. New
York, NY: ACM.

Prakken, Henry. 1995. From logic to dialectics in legal argument. Pages 165–74 of: Proceedings
of the 5th International Conference on Artificial Intelligence and Law. New York, NY:
ACM.

Prakken, Henry. 2005. AI & Law, logic and argument schemes. Argumentation, 19(3),
303–20.

Prakken, Henry and Sartor, Giovanni. 1998. Modelling reasoning with precedents in a formal
dialogue game. Artificial Intelligence and Law, 6, 231–87.

Privault, Caroline, O’Neill, Jacki, Ciriza, Victor, and Renders, Jean-Michel. 2010. A new
tangible user interface for machine learning document review. Artificial Intelligence
and Law, 18(4), 459–79.

Putman, William H. 2008 Legal Analysis and Writing for Paralegals. Boston, MA: Cengage
Learning.

Quinlan, J. Ross. 1986. Induction of decision trees. Machine Learning, 1(1), 81–106.
Quinlan, J. Ross. 2004. C4.5 Release 8 www.rulequest.com/Personal/ (accessed July 19, 2015).
Rahwan, Iyad, Simari, Guillermo R., and van Benthem, Johan. 2009. Argumentation in

Artificial Intelligence, vol. 47. Dordrecht: Springer.
Ravel Law. 2015a. Ravel: Data Driven Research www.ravellaw.com (accessed December 30,

2015).
Ravel Law. 2015b. Ravel Judge Analytics (accessed December 31, 2015).
Ravel Law. 2015c.RavelQuickStartGuide. https://d2xkkp20fm9wy8.cloudfront.net/downloads/

Ravel_QuickStart_Guide.pdf (accessed December 31, 2015).
Ravel Law. 2015d. What Determines Relevance. https://ravellaw.zendesk.com/hc/en-us/

articles/213290777-What-determines-Relevance- (accessed December 31, 2015).
Reed, Chris and Rowe, Glenn. 2004. Araucaria: software for argument analysis, diagram-

ming and representation. International Journal on Artificial Intelligence Tools, 13(04),
961–79.

Remus, Dana and Levy, Frank S. 2015. Can Robots be Lawyers? Computers, Lawyers, and the
Practice of Law (December 30, 2015) http://ssrn.com/abstract=2701092 (accessed July 24,
2016).

Rissland, Edwina L. 1990. Artificial intelligence and law: stepping stones to a model of legal
reasoning. Yale Law Journal, 1957–81.

Rissland, Edwina L. and Friedman, M. Timur. 1995. Detecting change in legal concepts.
Pages 127–36 of: Proceedings of the 5th International Conference on Artificial Intelligence
and Law. New York, NY: ACM.

Rissland, Edwina L. and Skalak, David B. 1991. CABARET: statutory interpretation in a
hybrid architecture. International Journal of Man–Machine Studies, 34, 839–87.

Rissland, Edwina L., Skalak, David B., and Friedman M. Timur. 1996. BankXX: support-
ing legal arguments through heuristic retrieval. Artificial Intelligence and Law, 4(1),
1–71.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 416 — #14

416 Bibliography

Robaldo, Livio, Humphreys, Llio, Sun, Xin et al. 2015. Combining input/output logic
and reification for representing real-world obligations. In: Proceedings of the Ninth
International Workshop on Juris-Informatics. JURISIN 2015. Kanagawa, Japan.

Rose, Daniel E. and Belew, Richard K. 1991. A connectionist and symbolic hybrid for
improving legal research. International Journal of Man–Machine Studies, 35(1), 1–33.

Ross Intelligence. 2015. Ross: Your Brand New Super Intelligent Attorney www
.rossintelligence.com/ (accessed December 30, 2015).

Saravanan, Manimaran and Ravindran, Balaraman. 2010. Identification of rhetorical roles for
segmentation and summarization of a legal judgment. Artificial Intelligence and Law,
18(1), 45–76.

Saravanan, Manimaran, Ravindran, Balaraman, and Raman, Subramanian. 2009. Improving
legal information retrieval using an ontological framework. Artificial Intelligence and
Law, 17(2), 101–24.

Sartor, Giovanni, Walton, Doug, Macagno, Fabrizio, and Rotolo, Antonino. 2014. Argumen-
tation schemes for statutory interpretation: a logical analysis. Page 11 of: Legal Knowledge
and Information Systems: JURIX 2014: The Twenty-Seventh Annual Conference, vol. 271.
Amsterdam: IOS Press.

Savelka, Jaromír and Ashley, Kevin D. 2015. Transfer of predictive models for classifica-
tion of statutory texts in multi-jurisdictional settings. Pages 216–20 of: Proceedings of
the 15th International Conference on Artificial Intelligence and Law. New York, NY:
ACM.

Savelka, Jaromir, Ashley, Kevin, and Grabmair, Matthias. 2014. Mining information from
statutory texts in multi-jurisdictional settings. Pages 133–42 of: Legal Knowledge and
Information Systems: JURIX 2014: The Twenty-Seventh Annual Conference, vol. 271.
Amsterdam: IOS Press.

Savelka, Jaromir and Grabmair, Matthias. 2015. (Brief) Introduction to (Selected Aspects
of) Natural Language Processing and Machine Learning, Tutorial at Workshop on
Automated Detection, Extraction and Analysis of Semantic Information in Legal Texts.
http://people.cs.pitt.edu/∼jsavelka/docs/20150612ASAILTutorial.pdf (accessed July 1,
2016).

Savelka, Jaromır, Trivedi, Gaurav, and Ashley, KevinD. 2015. Applying an interactivemachine
learning approach to statutory analysis. Pages 101–10 of: Legal Knowledge and Infor-
mation Systems: JURIX 2015: The Twenty-Eighth Annual Conference. Amsterdam: IOS
Press.

Schank, Roger C. 1996. Goal-based scenarios: Case-based reasoning meets learning by
doing. Pp. 295–347 of: David Leake (ed.), Case-based Reasoning: Experiences, Lessons
& Future Directions. Menlo Park, CA: AAAI Press/The MIT Press.

Schank, Roger C., Kolodner, Janet L., and DeJong, Gerald. 1981. Conceptual information
retrieval. Pages 94–116 of: Proceedings of the 3rd Annual ACM Conference on Research
and Development in Information Retrieval. SIGIR ’80. Kent, UK: Butterworth & Co.

Schauer, Frederick. 1995. Giving reasons. Stanford Law Review, 47, 633–59.
Scheer, August-Wilhelm, Kruppke, Helmut, Jost, Wolfram, and Kindermann, Herbert. 2006.

Agility by ARIS Business Process Management: Yearbook Business Process Excellence
2006/2007, vol. 243. Springer Science & Business Media.

Schwartz, Ariel. 2011. Why Watson Wagered $947, and Other Intel on the Jeopardy
Supercomputer www.fastcompany.com/1728740/why-watson-wagered-947-and-other-
intel-jeopardy-supercompute (accessed February 1, 2015).

Sebastiani, Fabrizio. 2002. Machine learning in automated text categorization. ACM
Computing Surveys (CSUR), 34(1), 1–47.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 417 — #15

Bibliography 417

Sergot, Marek J., Sadri, Fariba, Kowalski, Robert A. et al. 1986. The British Nationality Act as
a logic program. Communications of the ACM, 29(5), 370–86.

Shrivathsan, Michael. 2009. Use Cases Definition (Requirements Management Basics).
http://pmblog.accompa.com/2009/09/19/use-cases-definition-requirements-management-
basics/ (accessed July 1, 2016).

Sklar, Howard. 2011. Using built-in sampling to overcome defensibility concerns with
computer-expedited review. Pages 155–61 of: Proceedings of the Fourth DESI Workshop
on Setting Standards for Electronically Stored Information in Discovery Proceedings.
Pittsburgh, PA.

Slonim, Noam. 2014. IBM Debating Technologies How Persuasive Can a Computer Be?
Presentation at Frontiers and Connections between Argumentation Theory and Natural
Language Processing Workshop (July 22, 2014). Bertinoro, Italy.

Sohn, Edward. 2013. Top Ten Concepts to Understand about Predictive Coding. www.acc
.com/legalresources/publications/topten/ttctuapc.cfm (accessed May 27, 2015).

Sowa, John F. 1984. Conceptual Structures: Information Processing in Mind and Machine.
Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Sowizral, Henry A. and Kipps, James R. 1985. Rosie: A Programming Environment for Expert
Systems. Technical Report. DTIC Document.

Spaeth, Harold J., Benesh, Sara, Epstein, Lee et al. 2013. Supreme Court Database, Version
2013 Release 01 http://supremecourtdatabase.org (accessed August 30, 2015).

Staudt, Ronald and Lauritsen, Marc. 2013. Symposium on justice, lawyering, and legal
education in the digital age. Chicago-Kent Law Review, 88(3) http://studentorgs
.kentlaw.iit.edu/cklawreview/issues/vol-88-issue-3/ (accessed February 3, 2015).

Steinberger, Raif, Ebrahim, Mohamed, and Ignat, Camelia. 2013. JRC EuroVoc Indexer
JEX-A Freely Available Multi-label Categorisation Tool. arXiv preprint.

Strötgen, Jannik and Gertz, Michael. 2013. Multilingual and cross-domain temporal tagging.
Language Resources and Evaluation, 47(2), 269–98.

Surdeanu, Mihai, Nallapati, Ramesh, Gregory, George, Walker, Joshua, and Manning,
Christopher D. 2011. Risk analysis for intellectual property litigation. Pages 116–20 of:
Proceedings of the 13th International Conference on Artificial Intelligence and Law. New
York, NY: ACM.

Susskind, Richard. 2010. The End of Lawyers?: Rethinking the Nature of Legal Services.
Oxford: Oxford University Press.

Sweeney, Patricia M., Bjerke, Elisabeth E., Potter, Margaret A. et al. 2014. Network analysis
of manually-encoded state laws and prospects for automation. In: Winkels, Radboud
(ed.), Network Analysis in Law. Diritto Scienza Technologia.

Szoke, Akos, Macsar, Krisztian, and Strausz, Gyorgy. 2014. A text analysis framework for
automatic semantic knowledge representation of legal documents. Pages 59–66 of:
Winkels, Radboud, Lettieri, Nicola, and Faro, Sebastiano (eds.), Network Analysis in
Law. Collana: Diritto Scienza Tecnologia/Law Science Technology Temi, 3. Napoli:
Edizioni Scientifiche Italiane.

Takano, Kenji, Nakamura, Makoto, Oyama, Yoshiko, and Shimazu, Akira. 2010. Semantic
analysis of paragraphs consisting of multiple sentences: towards development of a
logical formulation system. Pages 117–26 of: Proceedings of the 2010 Conference on Legal
Knowledge and Information Systems: JURIX 2010: The Twenty-Third Annual Conference.
Amsterdam, The Netherlands : IOS Press.

Teufel, Simone, Siddharthan, Advaith, and Batchelor, Colin. 2009. Towards discipline-
independent argumentative zoning: evidence from chemistry and computational
linguistics. Pages 1493–502 of: Proceedings of the 2009 Conference on Empirical Methods

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 418 — #16

418 Bibliography

in Natural Language Processing: Volume 3. EMNLP ’09. Stroudsburg, PA: Association
for Computational Linguistics.

Thielscher, Michael. 2011. A unifying action calculus. Artificial Intelligence, 175(1), 120–41.
Thompson, Paul. 2001. Automatic categorization of case law. Pages 70–7 of: Proceedings of the

8th International Conference on Artificial Intelligence and Law. New York, NY: ACM.
Tredennick, John. 2014a. Measuring Recall in E-Discovery Review: A Tougher Problem

than You might Realize, Part 1 www.catalystsecure.com/blog/2014/10/measuring-
recall-in-e-discovery-review-a-tougher-problem-than-you-might-realize-part-1/ (accessed
September 1, 2016).

Tredennick, John. 2014b. Measuring Recall in E-Discovery Review: A Tougher Problem than
You might Realize, Part 2 https://pdfs.semanticscholar.org/4465/8cef0355aa63279f6dc
2657eb1326dac8229.pdf (accessed September 1, 2016).

Turney, Peter D.and Pantel, Patrick. 2010. From frequency to meaning: vector space models
of semantics. Journal of Artificial Intelligence Research, 37(1), 141–88.

Turtle, Howard. 1995. Text retrieval in the legal world. Artificial Intelligence and Law, 3(1–2),
5–54.

Turtle, Howard and Croft, W. Bruce. 1990. Inference networks for document retrieval.
Pages 1–24 of: Proceedings of the 13th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’90. New York, NY: ACM.

Uyttendaele, Caroline, Moens, Marie-Francine, and Dumortier, Jos. 1998. SALOMON:
automatic abstracting of legal cases for effective access to court decisions. Artificial
Intelligence and Law, 6(1), 59–79.

van der Pol, Jorke. 2011. Rules-Driven Business Services: Flexibility with the Boundaries of
the Law. Invited talk of Jorke van der Pol, Senior advisor, Ministry of the Interior and
Kingdom Relations, Immigration and Naturalisation Service, The Netherlands at the
Thirteenth International Conference on Artificial Intelligence and Law, University of
Pittsburgh School of Law.

Van Engers, Tom, Boer, Alexander, Breuker, Joost, Valente, André, and Winkels, Radboud.
2008. Ontologies in the legal domain. Pages 233–61 of: Digital Government. Dordrecht:
Springer.

Van Kralingen, Robert W., Visser, Pepijn R. S., Bench-Capon, Trevor J. M., and Van
Den Herik, H. Jaap. 1999. A principled approach to developing legal knowledge systems.
International Journal of Human–Computer Studies, 51(6), 1127–54.

Verheij, Bart. 2009. The Toulmin argument model in artificial intelligence. Pages 219–38 of:
Argumentation in Artificial Intelligence. Dordrecht: Springer.

Verheij, Bart, Bex, Floris, Timmer, Sjoerd T. et al. 2015. Arguments, scenarios and probabil-
ities: connections between three normative frameworks for evidential reasoning. Law,
Probability and Risk, 15, 35–70.

Wagner, Karl and Klueckmann, Joerg. 2006. Business process design as the basis for compli-
ance management, enterprise architecture and business rules. Pages 117–27 of: Scheer,
August-Wilhelm, Kruppke, Helmut, Jost, Wolfram, and Kindermann, Herbert (eds.),
AGILITY by ARIS Business Process Management. Berlin Heidelberg: Springer.

Walker, Vern R. 2007. A default-logic paradigm for legal fact-finding. Jurimetrics, 47, 193–243.
Walker, Vern R. 2011. Empirically quantifying evidence assessment in legal decisions.

Presentation at the Second International Conference on Quantitative Aspects of Justice
and Fairness (February 25–6, 2011). Fiesole, Italy.

Walker, Vern R. 2016. The need for annotated corpora from legal documents, and for
(human) protocols for creating them: the attribution problem. In: Cabrio, Elena, Hirst,
Graeme, Villata, Serena, and Wyner, Adam (eds.), Natural Language Argumentation:

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 419 — #17

Bibliography 419

Mining, Processing, and Reasoning over Textual Arguments (Dagstuhl Seminar 16161).
http://drops.dagstuhl.de/opus/volltexte/2016/6692/pdf/dagrep_v006_i004_p080_s16161.pdf
(accessed March 2, 2017).

Walker, Vern R., Bagheri, Parisa, and Lauria, Andrew J. 2015a. Argumentation Mining from
Judicial Decisions: The Attribution Problem and the Need for Legal Discourse Models.
ICAIL 2015 Workshop on Automated Detection, Extraction and Analysis of Semantic
Information in Legal Texts (June 12, 2015). San Diego, CA.

Walker, Vern R., Carie, Nathaniel, DeWitt, Courtney C., and Lesh, Eric. 2011. A frame-
work for the extraction and modeling of fact-finding reasoning from legal decisions:
lessons from the Vaccine/Injury Project Corpus. Artificial Intelligence and Law, 19(4),
291–331.

Walker, Vern R., Lopez, Bernadette C., Rutchik, Matthew T., and Agris, Julie L. 2015b.
Representing the logic of statutory rules in the United States. Pages 357–81 of: Logic in
the Theory and Practice of Lawmaking. Dordrecht: Springer.

Walker, Vern R. and Vazirova, Karina. 2014. Annotating patterns of reasoning about medical
theories of causation in vaccine cases: toward a type system for arguments. In Proceedings
of the First Workshop on Argumentation Mining, at the 52nd Annual Meeting of the
Association for Computational Linguistics, ACL 2014, vol. 1. Baltimore, MD.

Walton, Doug and Gordon, Thomas F. 2009. Legal Reasoning with Argumentation Schemes.
www.dougwalton.ca/talks/09GordonWaltonICAIL.pdf (accessed June 6, 2015).

Walton, Douglas and Gordon, Thomas F. 2005. Critical questions in computational models
of legal argument. Pages 103–11 of: Dunne, Paul and Bench-Capon, Trevor (eds.),
Argumentation in Artificial Intelligence and Law. IAAIL Workshop Series. Nijmegen,
The Netherlands: Wolf Legal Publishers.

Wang, Yining, Wang, Liwei, Li, Yuanzhi et al. 2013. A theoretical analysis of NDCG ranking
measures. In: Proceedings of the 26th Annual Conference on Learning Theory (COLT
2013). Princeton, NJ.

Waterman, Donald A. and Peterson, Mark A. 1981. Models of Legal Decision Making:
Research Design and Methods. Rand Corporation, The Institute for Civil Justice.

Weber, Robert C. 2011. Why ‘Watson” matters to lawyers. The National Law Journal. www
.nationallawjournal.com/id=1202481662966/Why-Watson-matters-to-lawyers?slreturn=
20150424173345 (accessed May 24, 2015).

Weiss, Charles. 2003. Expressing scientific uncertainty. Law, Probability and Risk, 2(1), 25–46.
Winkels, Radboud and Boer, Alexander. 2014. Finding and visualizing context in Dutch

legislation. Pages 23–9 of: Winkels, Radboud, Lettieri, Nicola, and Faro, Sebastiano
(eds.), Network Analysis in Law. Collana: Diritto Scienza Tecnologia/Law Science
Technology Temi, 3. Napoli: Edizioni Scientifiche Italiane.

Winkels, Radboud, Bosscher, Doeko, Boer, Alexander, and Hoekstra, Rinke. 2000. Extended
conceptual retrieval. Pages 85–97 of: Legal Knowledge and Information Systems: JURIX
2000: The Thirteenth Annual Conference. Amsterdam: IOS Press.

Winkels, Radboud and Hoekstra, Rinke. 2012. Automatic extraction of legal concepts
and definitions. In: JURIX 2012: Proceedings of the Twenty-Fifth Conference on Legal
Knowledge and Information Systems. Amsterdam: IOS Press.

WIPO. 2015. Index of WIPO UDRP Panel Decisions. www.wipo.int/amc/en/domains/
search/legalindex.jsp (accessed February 4, 2015).

Wittgenstein, Ludwig. 1958. Philosophical Investigations (3rd edn.). New York: The
Macmillan Company.

Wu, Stephen Tze-Inn, Kaggal, Vinod, Dligach, Dmitriy et al. 2013. A common type system
for clinical natural language processing. Journal of Biomedical Semantics, 4, 1–12.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“Bibliography” — 2017/5/27 — 12:24 — page 420 — #18

420 Bibliography

Wyner, Adam. 2008. An ontology inOWL for legal case-based reasoning.Artificial Intelligence
and Law, 16(4), 361–87.

Wyner, Adam and Governatori, Guido. 2013. A study on translating regulatory rules from
natural language to defeasible logic. In: Proceedings of RuleML. Seattle, WA.

Wyner, Adam and Peters, Wim. 2010. Towards annotating and extracting textual legal
case factors. Pages 36–45 of: Proceedings of the Language Resources and Evaluation
Conference (LREC 2010), Workshop on Semantic Processing of Legal Texts (SPLeT 2010).
Valletta, Malta.

Wyner, Adam and Peters, Wim. 2011. On rule extraction from regulations. In: JURIX 2011:
Proceedings of the Twenty-Fourth Conference on Legal Knowledge and Information
Systems. Amsterdam: IOS Press.

Wyner, Adam and Peters, Wim. 2012. Semantic annotations for legal text processing
using GATE teamware. Pages 34–6 of: LREC 2012 Conference Proceedings: Semantic
Processing of Legal Texts (SPLeT-2012) Workshop. Istanbul, Turkey.

Yimam, Seid Muhie, Gurevych, Iryna, de Castilho, Richard Eckart, and Biemann, Chris.
2013. WebAnno: a flexible, web-based and visually supported system for distributed
annotations. Pages 1–6 of: ACL (Conference System Demonstrations). Sofia, Bulgaria.

Yoshida, Yutaka, Honda, Kozo, Sei, Yuichi et al. 2013. Towards semi-automatic identification
of functional requirements in legal texts for public administration. Pages 175–84 of:
JURIX. Proceedings of the Twenty- Sixth Conference on Legal Knowledge and Information
Systems. Amsterdam: IOS Press.

Yoshino, Hajime. 1995. The systematization of legal meta-inference. Pages 266–75 of:
Proceedings of the 5th International Conference on Artificial Intelligence and Law. New
York, NY: ACM.

Yoshino, Hajime. 1998. Logical structure of contract law system – for constructing a knowl-
edge base of the United Nations Convention on contracts for the international sale of
goods. Journal of Advanced Computational Intelligence, 2(1), 2–11.

Zeni, Nicola, Kiyavitskaya, Nadzeya, Mich, Luisa, Cordy, James R., and Mylopoulos,
John. 2013. GaiusT: supporting the extraction of rights and obligations for regulatory
compliance. Requirements Engineering, 20, 1–22.

Zhang, Jiansong and El-Gohary, Nora M. 2015. Automated information transformation for
automated regulatory compliance checking in construction. Journal of Computing in
Civil Engineering, 29, B4015001.

Zhang, Paul. 2015. Semantic Annotation of Legal Texts. Invited Talk, ICAIL 2015 Workshop on
Automated Detection, Extraction and Analysis of Semantic Information in Legal Texts.

Zhang, Paul, Silver, Harry, Wasson, Mark, Steiner, David, and Sharma, Sanjay. 2014.
Knowledge network based on legal issues. Pages 21–49 of: Winkels, Radboud, Lettieri,
Nicola, and Faro, Sebastiano (eds.), Network Analysis in Law. Collana: Diritto Scienza
Tecnologia/Law Science Technology Temi, 3. Napoli: Edizioni Scientifiche Italiane.

Zhou, Li and Hripcsak, George. 2007. Temporal reasoning with medical data: a review with
emphasis on medical natural language processing. Journal of Biomedical Informatics,
40(2), 183–202.

Zywica, Jolene and Gomez, Kimberley. 2008. Annotating to support learning in the content
areas: teaching and learning science. Journal of Adolescent & Adult Literacy, 52(2),
155–65.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380.014
Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 19 Aug 2017 at 10:57:21, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380.014
https://www.cambridge.org/core

“subjectindex” — 2017/5/27 — 12:45 — page 421 — #1

Index

ablation experiments, 120, 124
abstract argumentation framework, 139–141, 147
acceptability, 128–131, 140–141, 145
accuracy, 113–115, 120, 124, 158–159, 239, 242, 262,

265, 291, 292, 294, 297, 305, 326
AGATHA, 121, 151, 160
Aharoni, E., 306, 307, 372, 377
Akoma Ntoso, 181, 182
Al-Kofahi, K., 248–253
Aleven, V., 81, 85, 90–92, 115, 139, 185, 298
algorithm, 4, 22, 36, 40, 53, 88, 92, 96, 108–111,

113–116, 125, 158, 204, 234, 238, 242, 247, 251
A* best-first search, 96
answer-typing, 204
CATO prediction, 115
clustering, 247
downplaying/emphasizing distinctions, 92
hard/easy questions of law, 22, 40
IBP hypothesis-testing, 116–120
k nearest neighbor, k-NN, 108, 115, 296, 297
logistic regression, 305
machine learning, 114, 125, 234–239, 242, 247,

251–252, 254, 255, 264, 266, 275, 278, 289,
297, 301, 305

decision tree, 110–112, 232, 239, 251, 261, 278,
294, 296, 297, 305

metrics, 114
naïve Bayes, 261, 289, 297, 305
support vector machine, SVM, 242, 251–253,

256, 261, 264, 266, 278, 291
NLP, 270
simulated annealing, 158
statutory interpretation, 53

Allen, L., 40–47, 57, 63
Araszkiewicz, M., 166
Araucaria, 286, 288, 291, 293, 294

argument, 287
argument mining, 5, 23–27, 293, 328, 372, 376
argument retrieval, 11, 164, 299, 316–320, 328, 335,

339, 350, 359
argument scheme, 129, 130, 134–139, 141–145, 147,

149–158, 160, 166, 188, 190, 196–199, 201,
286, 292, 294, 315, 334, 336, 338, 361, 365,
379

argument-related information, 26, 31, 34, 35, 106,
167, 185, 201, 285–294, 299–310, 315, 316,
321, 327–334, 342, 359, 361, 368, 376, 377,
381, 383, 391

argumentation framework, 129, 131, 141, 143
abstract, 140–141, 148
Carneades, 131, 139

Ashley, K., 30, 76, 81–87, 116–120, 131, 135, 137–139,
185–201, 239–241, 261, 276, 280, 287,
294–298, 300, 302, 365

Atkinson, K., 140–143, 148, 185
attribution, 26, 363, 369–371
augmented transition network, ATN, 19, 65

Bach, N. X., 262, 269, 282
backward chaining, 10, 48, 94, 132, 156, 165
BankXX, 232
Bauer, R., 240
Bayes rule, 289
Bayesian network, 148, 218–221
Belew, R., 230, 231, 354
Bench-Capon, T., 64, 100–103, 121, 139–143,

148, 151, 200, 333
Berman, D., 40, 53–56, 63, 97–100, 102, 154,

185, 187
Bex, F., 160
Biagioli, C., 261
Bing, J., 12

421
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:14:31, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“subjectindex” — 2017/5/27 — 12:45 — page 422 — #2

422 Index

bipartite, 131, 139, 156
Blair, D., 222, 223, 243
BNA program, 47–52, 54, 56, 64, 70, 132, 133, 135,

165, 259
Boella, G., 262
Boer, A., 345
Bommarito, M., 111–114, 125, 149
Brüninghaus, S., 30, 117–120, 287, 294–298
Branting, L.K., 93–96, 105, 139, 145
Breaux, T., 262, 273, 275, 307, 374, 375
Breuker, J., 174–176, 227

Callan, J., 229
case-based reasoning, CBR, 33, 73–106, 115–123
CATO, 81, 85, 90–92, 97, 100–102, 105, 106,

115–117, 119–121, 125, 137, 138, 145, 149, 151,
155, 159, 160, 331, 333, 334, 364

factor hierarchy, 90, 115, 120, 383
Charniak, E., 219–220
Chorley, A., 121, 151, 160
cognitive computing, 4, 12–14, 31, 34–38, 47, 72,

74, 80, 104, 105, 107, 125, 164, 171, 185, 201,
209–211, 234, 236, 241, 258, 260, 287, 313,
332, 350–391

computational model
legal argument, CMLA, 4, 33, 127, 128, 131, 141,

144, 145, 147, 149, 167, 378
legal reasoning, CMLR, 4, 18, 31, 33, 35–37, 355

case-based, 33
Confusion matrix, 238
Conrad, J., 223, 224
context-free grammar, 273
contracts, 18, 27–29, 179, 262, 385
critical questions, 130, 134, 135, 138, 142, 147, 166
cross validation or k-fold cross validation, 113, 119,

159, 264, 280, 281, 297, 304, 305, 322
Crowdsourcing, 374

Dabney, D., 223
DALOS, 178–180, 183, 262, 278
Daniels, J., 227–230
de Maat, E., 261, 266–268
Debater, 4, 14, 23–27, 34, 37, 165–167, 287, 288,

306–307, 315, 334, 338, 372, 375, 377
decision tree, 110–112, 232, 239, 243, 251, 261, 278,

296, 297, see algorithm, machine learning,
decision tree

random forests of, RFDT, 112
defeasible, 63, 135, 144, 166, 176, 259, 268, 272, 361
Dick, J., 12, 286, 315
dimensions

and CATO Factors, 90
and legal factors, 81, 285, 335, 339, 359

in a feature space, 108, 217, 238, 242, 251, 252,
278, 296

in a weight map parameters space, 159
in BankXX, 232
in CABARET, 88–90
in Hypo, 73, 77, 81–87, 90, 105
legal factors and CATO Factors, 105

DOLCE, 183
Dung, P. M., 127, 140

E-Court Ontology, 176, 178, 227, 260
e-discovery, 34, 222, 236, 239–248, 255, 258,

385–387
EuroVoc, 262
extensible markup language, XML, 181, 182, 227,

262, 263, 265

factors
CATO, 81, 90, 100–102, 105, 106
evidence, 149, 162, 285, 332, 333, 350, 355, 357,

360, 367, 383, 391
family law, 138
IBP, 116, 117, 119, 120
knockout, 118, 159
legal, 73, 77, 81–86, 88, 90, 105, 107, 116, 117,

120, 121, 123, 125, 137, 138, 149–151, 159, 166,
167, 190, 192, 228, 232, 233, 285, 287, 294,
296, 298, 331–333, 335, 336, 338, 350, 355,
357, 359–363, 365, 369, 378, 379, 383, 391

property law, 192, 193, 197
VJAP, 150, 151, 154, 156

Fagan, F., 236, 238
feature vector, 238, 251, 253, 288, 289, 291, 296,

297, 304
Feng, V., 286, 293, 294, 334, 337
Ferrucci, D., 15, 16, 202, 203
forward chaining, 9
Francesconi, E., 178–180, 183, 261–265, 278, 282
Fuller, L., 22, 52
fuzzynyms, 180

Gangemi, A., 183
Gardner, A., 18–20, 22, 23, 40, 53, 65
GATE, 14, 298, 309
Gonçalves, T., 286
Gordon, T., 36, 63, 64, 129–138, 142, 144, 176, 185
Governatori, G., 63, 68–69, 262, 268, 272, 344
Grabmair, M., 31, 130, 131, 148–160, 188, 203–208,

261, 262, 276, 280, 282, 287, 299–305,
316–328

Granat, R., 35
Gray, G., 46
GREBE, 93–96, 105, 139, 145
Grover, C., 286

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:14:31, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“subjectindex” — 2017/5/27 — 12:45 — page 423 — #3

Index 423

Hachey, B., 286
Hafner, C., 12, 55, 63, 97–100, 102, 154, 187
Hamm, S., 13
Hart, H.L.A., 22, 45
Henderson, W., 7
Henseler, H., 246
Herring, D., 375
heuristics, 8, 9, 21–23, 51, 62, 64, 88, 90, 96, 130
Hirst, G., 286, 293, 294, 334, 337
Hoekstra, R., 11, 173, 176, 346
Hogan, C., 240
Horn clause logic, 44, 45, 47
Hypo, 73, 77, 81–88, 90, 97, 105, 115, 117, 119, 120,

139, 149, 160, 192, 335, 339
hyponyms, 180
hypothesis

and hypothetical, 187
legal, 332

and cognitive computing, 356–382,
387–391

predictive, 115–117, 119, 120, 297, 356
proposed test, 187
question answering, 28
relevance, 240, 258, 385, 387

implicit versus explicit, 241, 381
testing, 35, 356

hypotheticals, 78, 94, 190, 191
and hypotheses, 187
argument scheme for posing, 188, 192, 196, 198,

204
in Hypo, 83
in Socratic discussion and SCOTUS, 187, 199
near miss, 365
rules and values, 98, 106

IBP, 29, 105, 115–121, 125, 149–151, 155, 158, 159, 331,
333, 335, 364, 382, 383

+SMILE, 105, 126, 294–298
information retrieval

conceptual, 11, 28, 30, 31, 35, 234, 373, 379
legal, 11, 30, 31, 33, 34, 72, 168, 174, 178, 201,

208, 209, 224, 227, 231, 232, 248, 260, 262,
285, 287, 298, 305, 313–315, 327, 328, 339,
342, 344–346, 349, 350, 354, 360, 361, 379

relevance feedback, 222, 229, 241
reranking, 208, 224, 233, 313, 315, 320, 321, 324,

326–328, 345, see LUIMA-Rerank module
intermediate legal concept, ILC, 73, 190, 196, 197,

199, 201, 350
in AGATHA, 123
in CABARET, 88
in GREBE, 93
in IBP, 117
in VJAP, 149, 150, 154, 160

inverted index, 214, 215, 218, 221, 226, 319, 328
Iron Tech Lawyer Competition, 36
isomorphism, 63, 182

Jackson, P., 248, 253, 286, 315
Jeopardy, 15–18, 23, 27, 203, 204
Jurafsky, Daniel, 327

Katz, D., 5, 111–114, 125, 149
Kelly, J., 13
Kiyavitskaya, N., 262, 273
knowledge representation

bottleneck, 4, 11, 33, 34, 226, 355
Koetter, F., 60–62

Landauer, T., 242
LARCCS, 328–329, 331–332, 336, 339, 359, 387
Lauritsen, M., 35
legal concepts

extensional definition, 77, 78, 81, 93
intensional definition, 77, 78, 81

legal factor, see factors, legal
Legal Knowledge Interchange Format, LKIF, 176
legal text analytics, 5, 33, 34, 36, 202, 354, 381, 382
LegalOnRamp, LOR, 27
LegalSifter, 385
LegalTech News, 351
lemmatization, 265
Levi, E.H., 74–78
Levy, F., 120, 246
Lex Machina, 6, 123, 167, 353, 354, 366, 382
Lex Specialis, 144, 145
Lindahl, L., 150
Lippe, P., 27, 36
Llewellyn, K., 145
logistic regression, see algorithm, logistic

regression
LRI-Core Ontology, 176
Lucene, 319–321, 339
LUIMA, 34, 226, 285, 287, 299, 300

-Annotate module, 301–305
-Rerank module, 320, 321
-Search module, 319, 320
and legal IR systems, 328
annotation, 309, 375
evaluation, 321, 324, 327
expansion, 332, 333, 335, 338
hypothesis, 316
hypothesis testing, 361
presuppositional information, 302, 334, 335,

339, 373
query, 381
system architecture, 316, 319
team, 339, 376, 377

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:14:31, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“subjectindex” — 2017/5/27 — 12:45 — page 424 — #4

424 Index

LUIMA (continued)
type system, 204, 207, 208, 227, 260, 299, 316,

332, 334, 339, 360, 373, 376
statutes, 282, 344, 388

Lynch, C., 375

MacCormick, N., 52–54
machine learning, see algorithm, machine

learning
machine learning, ML, 5, 13, 28, 34, 107, 125, 168,

208, 224, 248, 251, 254, 255, 258, 261, 263,
264, 301, 305, 315

and e-discovery, 239, 241, 242, 246, 248
and legal texts, 234–236, 238
e-discovery, 387
evaluation, 113, 114
from text, 294, 302, 303, 306, 327, 328, 391

polarity, 372
ranking weights, 320

knowledge engineering, KE versus, 263, 266,
272

overfitting, 113
propositions and conclusions, 287, 291
statutory networks, 276, 278, 344
supervised, 109, 110, 112, 238, 242, 246–248, 251,

253, 261, 372
unsupervised, 238, 247, 248

Mackaay, E., 108, 109
majority-class baseline, 120
Maron, D., 222, 223, 243
Mart, S., 327
matrix

document-term or frequency, 238
McCallum, A., 296
McCarty, L. T., 78–81, 101, 104, 139, 286
McLaren, B., 106, 139
metrics

accuracy, 113–115, 120, 124, 158–159, 239, 242,
262, 265, 291, 292, 294, 297, 305, 326

area under the ROC curve, AUC, 256
average precision, 323–325
elusion, 222, 246
F1-score or F1-measure, 114, 256, 262, 291, 292,

297, 305
mean average precision, MAP, 323, 325
normalized discounted cumulative gain, 323
precision, 114, 222–224, 227, 247, 249, 251, 253,

256, 262, 265, 271, 291, 297, 305
recall, 114, 222, 223, 227, 246, 247, 249, 251, 253,

256, 257, 262, 265, 271, 291, 297, 305
receiver operating characteristic, ROC, 256
tf/idf, 180, 218, 221, 226, 237, 238, 264, 278, 304,

326
tradeoff of precision and recall, 222, 223

Mimouni, N., 286, 315, 345
Mochales, R., 287–294, 304, 306, 334, 337, 338
model, 135

classical model of logical deduction, 38, 134
connecting legal texts to computational legal

reasoning, 313
IBP domain, 116
machine learning, see algorithm, machine

learning
of abstract argumentation, 139
of business process, 60

as Petri net, 66
as workflow net, 67

of business process compliance, 69
of case-based legal reasoning, 73, 77, 138

with teleology, 97
with theory construction, 79, 101

of evidentiary legal argument, 160
of hypothetical legal argument, 187
of legal argument, see computational model,

legal argument
of legal discourse, 370
of legal norms, 58
of legal reasoning, see computational model,

legal reasoning
of relevance, 218, 222
of rule-based legal reasoning, 8, 47, 138
of statutory interpretation, 73
ontology as, 174
predictive, 125, 149
statistical, 243
vector space, 217
VJAP domain, 150

Modgil, S., 131, 141
Moens, M.-F., 287–294, 304, 306, 334, 337, 338
monotonic reasoning, 51, 134

n-grams, 225, 237, 238, 282, 305
Neota Logic, 10, 57
network

citation, 70, 72, 224, 226, 230–232, 315, 320, 345,
354, 382

statutory, 70–72, 276, 346–348, 354
network analysis, 72, 230, 232, 246, 345, 348, 354
non-monotonic reasoning, 51, 63, 129, 134
normalization, 38, 41–47, 236, 302

Oard, D., 222, 241–247
Oberle, D., 58, 183, 184
ontology

and e-discovery, 241
and legal information retrieval, 227
framework and domain ontology, 172, 173, 176
interoperability, 373

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:14:31, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“subjectindex” — 2017/5/27 — 12:45 — page 425 — #5

Index 425

legal, 34, 171–209, 378
statutory, 58, 60, 72, 260, 262, 263, 273, 344
type system, see type system

Ontology Web Language, OWL, 176
Opsomer, R., 261

Palmirani, M., 65
Peters, W., 298, 309, 335
Prakken, H., 129–131, 141
predicate logic, predicate calculus, or first order

logic, 51
predicate logic, predicate calculus, classical logic,

or first order logic, 44
predicate logic, predicate calculus, or first order

logic, 20, 41, 63
predictive coding, 7, 241–248, 251, 254–258, 301,

380
presuppositional information, see LUIMA,

presuppositional information
pretrial discovery, 239
Privault, C., 241, 246, 247
probabilistic latent semantic analysis, PLSA, 242,

248
proof standards, 129, 130, 132, 142, 145, 146
propositional logic, 41, 42, 44
protocols, 301, 308, 370
Putman, W., 254

Quinlan, J. R., 110, 294, 296

Ravel, 6, 353, 354, 382
rebuttal, 33, 83, 132
regex, regular expressions, 302
relevance hypothesis, see hypothesis, relevance
relevance measure

Boolean, 27, 214, 216, 222, 241
reliability of annotation, 306, 307
Remus, D., 120, 246
Rhetorical Structure Theory, RST, 371
Rissland, E., 22, 76, 78, 88–90, 139, 227–230,

232–233
Rose, D., 230, 231, 354
Ross Intelligence, 6, 37, 351, 352, 354, 382

Saravanan, M., 227, 286, 315
Sartor, G., 54, 100–103, 121, 139, 141, 143, 148, 151,

333
Savelka, J., 236, 255–258, 261, 262, 276, 277, 280,

281
Schank, R., 12, 381
Schauer, F., 187
search

A* best-first, 96, 123
breadth-first, 48
depth-first, 48

semantic nets or networks, 93–95, 355, 378
sensemaking, 240
Sergot, M., 47–52
simulated annealing, 158
SIROCCO, 106, 139, 378
Slonim, N., 287, 306, 307, 315, 338, 372, 377
social network analysis, 246
Sowa, J., 12
SPIRE, 227–230
spreading activation, 231
statistical estimate, 243

confidence interval, 244
confidence level, 244
margin of error, 244
point estimate, 243
statistical sample, 243

statutory analysis, 254–258, 380
statutory network, see network, statutory
statutory ontology, see ontology, statutory
Staudt, R., 11, 36
stemming, 236, 265, 302
subsumption, 58, 60, 135, 183, 184
summarization, extractive vs. abstractive, 327
Summers, R., 52–54
support vector machine, see algorithm, machine

learning, support vector machine, SVM
support vector machine, SVM

multiclass, 264
Surdeanu, M., 123–126, 353
Susskind, R., 7, 8, 35, 355
Szoke, A., 346

Takano, K., 269
technology-assisted review, 247
teleological reasoning, 53, 73, 97–104, 143–160, 378
term vector, 217, 218, 238, 242, 251, 261, 263, 278,

288
Teufel, S., 375
text representation

bag of words, 217, 246, 268, 295–298
Thompson, P., 286
trade secret law, 30, 81, 90, 116, 119, 123, 150, 151,

154, 156, 298, 335, 358, 362, 388
Turtle, H., 214, 216, 219, 221, 229
type system, 34, 171, 185, 202–204

legal, 171, 204–209, 342, 350
LUIMA, see LUIMA, type system
mentions, 203, 204, 208, 283, 302, 334, 373, 389
statutory, 283, 345

undercutting argument, 132
undermining argument, 63, 132

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:14:31, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

“subjectindex” — 2017/5/27 — 12:45 — page 426 — #6

426 Index

Unstructured Information Management
Architecture, UIMA, 14, 31, 34–36,
202–204, 208, 258, 285, 299, 309, 370, 373

RUTA rules, 298, 302
use case, 240, 384–387, 389

Vaccine/Injury Project, V/IP, 161, 208, 299, 300,
321

vagueness, 40
Value Judgment-based Argumentative Prediction,

VJAP, 149–160, 164, 185, 188, 293, 331,
333–335, 359, 361–365, 382, 383

van Engers, T., 174, 346
Van Kralingen, R., 176, 199
vector space, 108, 217, 236, 238, 242, 251, 291, 296,

297, 321
similarity, 218, 321

Verheij, B., 160

Wagner, K., 57
Walker, V., 160–162, 168, 299–302, 365, 369–370,

383

Walton, D., 129–138, 142, 185
Waterman, D., 8–10, 40, 48, 56, 62, 64, 75, 76, 88,

132, 165
Watson, 4, 14–18, 23, 26–28, 30, 31, 34–37, 165–167,

202–204, 351
Developer Cloud, 30, 31, 36, 37, 308, 387

Westlaw History Project, 248–254, 304
Winkels, R., 12, 173, 174, 176, 227, 261, 262,

266–268, 345
Wittgenstein, L., 383
Wyner, A., 150, 173, 174, 176, 178, 262, 268, 298,

309, 335, 344

Yoshida, Y., 262, 274
Yoshino, H., 21

Zeni, N., 262, 273
Zhang, P., 224–226, 286, 315

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316761380
Downloaded from https://www.cambridge.org/core. University of Florida, on 03 Nov 2017 at 09:14:31, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316761380
https://www.cambridge.org/core

	Cover

	Front Matter

	Artificial Intelligence and Legal Analytics: New tools for law practice inthe digital age

	Copyright, 2017

	Dedication

	Contents

	Illustrations
	Tables
	Acknowledgments
	Part I. Computational Models of Legal Reasoning

	1. Introducing AI & Law and Its Role in Future
Legal Practice

	2. Modeling Statutory Reasoning

	3. Modeling Case-based Legal Reasoning

	4. Models for Predicting Legal Outcomes

	5. Computational Models of Legal Argument

	Part II. Legal Text Analytics

	6. Representing Legal Concepts in Ontologies and
Type Systems

	7. Making Legal Information Retrieval Smarter

	8. Machine Learning with Legal Texts

	9. Extracting Information from Statutory and
Regulatory Texts

	10. Extracting Argument-Related Information from
Legal Case Texts

	Part III. Connecting Computational Reasoning Models and
Legal Texts

	11. Conceptual Legal Information Retrieval for
Cognitive Computing

	12. Cognitive Computing Legal Apps

	Glossary
	Bibliography
	Index

